Contenitore standard con zoccolo maschio 28 piedini dual in line a passo 100 mils, largo 600 mils. Ridottissimo ingombro: 20,7 x 38,7 x 12,8 mm. Circuito stampato a 4 strati per ottimizzare le immunità e le caratteristiche EMI. Necessita di una sola alimentazione compresa tra 3,0 e 20 Vdc, 25mA massimi (l'assorbimento puo' variare in base ai collegamenti del modulo). Disponibilita' di modalita' operative a basso consumo come idle mode, power down mode e riduzione di clock. Microcontrollore Philips P89LPC935 (codice compatibile 8051) senza quarzo (frequenza interna 7.3728 MHz ±2.5%) o con quarzo esterno da 11,0592 MHz, ordinando l'opzione .11MHZ. Elevate prestazioni grazie al ciclo macchina da 2 periodi di clock (6x). 8 KBytes FLASH per codice, 768 Bytes RAM per dati, 512 Bytes EEPROM per dati. 2 canali di Comparazione Analogica con diverse possibilità di configurazione ingressi ed uscite. Due A/D Converter da quattro canali con risoluzione 8 bit per un totale di 8 canali. 15 sorgenti di Interrupt con 4 livelli di priorità'. 2 Timer Counter multifunzione, a 16 bits. 4 canali CCU a 16 bits, con funzionalita' di comparazione, cattura eventi, generazione segnali PWM, ecc. Fino a 23 linee di I/O digitale collegate al connettore. Alcune di queste linee hanno funzionalita' multiple. Interfaccia di riconoscimento combinazioni predefinite via software su 8 delle 23 linee di I/O, in grado di generare interrupt. 1 linea comunicazione seriale hardware con protocollo fisico programmabile (Baud Rate fino a 115200 Baud, 8 o 9 bit di dati, 1 o 2 stop bit) bufferata in RS 232 od a livello TTL. Linea seriale caratterizzata da indirizzamento automatico e riconoscimento condizioni di errore che facilitano il collegamento in rete di diverse unità. Controllore I2C BUS completamente configurabile via software. Interfaccia SPI programmabile per comunicazioni sincrone ad alta velocità. Un Real Time Clock per temporizzazioni lunghe e di precisione, attivo anche nelle modalità a basso assorbimento. Sezione di Watch Dog che conferisce al sistema controllato una sicurezza estrema in tutte le condizioni operative. 1 LED di segnalazione dello stato, gestito via software tramite una linea di I/O digitale. 1 Dip Switch ad 8 vie per la configurazione delle modalità operative del Mini Modulo.
VINCOLI SULLA DOCUMENTAZIONE

Grifo® Tutti i Diritti Riservati

Nessuna parte del presente manuale può essere riprodotta, trasmessa, trascritta, memorizzata in un archivio o tradotta in altre lingue, con qualunque forma o mezzo, sia esso elettronico, meccanico, magnetico ottico, chimico, manuale, senza il permesso scritto della Grifo®.

IMPORTANTE

Tutte le informazioni contenute sul presente manuale sono state accuratamente verificate, ciononostante Grifo® non si assume nessuna responsabilità per danni, diretti o indiretti, a cose e/o persone derivanti da errori, omissioni o dall’uso del presente manuale, del software o dell’hardware ad esso associato. Grifo® altresì si riserva il diritto di modificare il contenuto e la veste di questo manuale senza alcun preavviso, con l’intento di offrire un prodotto sempre migliore, senza che questo rappresenti un obbligo per Grifo®.
Per le informazioni specifiche dei componenti utilizzati sui nostri prodotti, l’utente deve fare riferimento agli specifici Data Book delle case costruttrici o delle seconde sorgenti.

LEGENDA SIMBOLI

Nel presente manuale possono comparire i seguenti simboli:

- ❗️ Attenzione: Pericolo generico
- ⚠️ Attenzione: Pericolo di alta tensione
- 🚭 Attenzione: Dispositivo sensibile alle cariche elettrostatiche

Marchi Registrati

Altre marche o nomi di prodotti sono marchi registrati dei rispettivi proprietari.
INDICE GENERALE

INTRODUZIONE .. 1

VERSIONE SCHEDA .. 3
 NOTA SUL NOME DELLA SCHEDA .. 3

INFORMAZIONI GENERALI .. 4
 LINEE DI I/O DIGITALE ... 6
 COMUNICAZIONE SERIALE ... 6
 CLOCK ... 6
 DISPOSITIVI DI MEMORIA ... 8
 SEZIONE ALIMENTATRICE ... 8
 DIP SWITCH .. 10
 A/D CONVERTERS ... 10

SPECIFICHE TECNICHE .. 12
 CARATTERISTICHE GENERALI ... 12
 CARATTERISTICHE FISICHE .. 12
 CARATTERISTICHE ELETTRICHE ... 13

INSTALLAZIONE .. 14
 SEGNALAZIONI VISIVE .. 14
 CONNESSIONI ... 14
 CN1 - CONNETTORE CON SEGNALI DEL MINI MODULO ... 14
 INTERFACCIA CONNETTORI CON IL CAMPO ... 16
 JUMPER E DIP SWITCH .. 16
 JUMPER A STAGNO .. 18
 ALIMENTAZIONE ... 20
 CONFIGURAZIONI PER SCHEDE DI SUPPORTO ... 21
 UTILIZZO CON IL MODULO BLOCK GMB HR84 ... 21
 UTILIZZO CON LA SCHEDA GMM TST2 .. 23

COME INIZIARE .. 26
 SELEZIONE MODO OPERATIVO ... 36
 A/D CONVERTERS ... 36
 INGRESSI ANALOGICI ... 37
 SELEZIONE COMUNICAZIONE SERIALE .. 37

DESCRIZIONE SOFTWARE .. 38
 DESCRIZIONE SOFTWARE DELLE PERIFERICHE DI BORDO ... 42
 LED DI ATTIVITA' .. 42
 PERIFERICHE DELLA CPU .. 42

SCHEDE ESTERNE ... 43
BIBLIOGRAFIA ... 46

APPENDICE A: DESCRIZIONE COMPONENTI DI BORDO ... 37
 P89LPC932 .. 37

APPENDICE B: SCHEMA ELETTRICO GMM TST 2 ... 39

APPENDICE C: INDICE ANALITICO .. 43
INDICE DELLE FIGURE

FIGURA 1: Posizione del numero di revisione e del nome ... 3
FIGURA 2: Schema a blocchi .. 7
FIGURA 3: Foto GMM 935 ... 9
FIGURA 4: Foto GMM 935.11MHz ... 9
FIGURA 5: Foto GMM 935 vista dal basso ... 11
FIGURA 6: Tabella delle segnalazioni visive ... 14
FIGURA 7: CN1 - Zoccolo con segnali del Mini Modulo .. 15
FIGURA 8: Pianta componenti (lato superiore) .. 17
FIGURA 9: Pianta componenti (lato inferiore) ... 17
FIGURA 10: Tabella Jumper e Dip switch (1A parte) ... 18
FIGURA 11: Tabella Jumper e Dip switch (2A parte) ... 19
FIGURA 12: Disposizione LED, Dip switch, Jumper, Connettori, ecc. .. 19
FIGURA 13: Immagine del Mini Block GMB HR 84 chiuso .. 21
FIGURA 14: Foto GMB HR 84 + GMM 935.11MHz ... 22
FIGURA 15: Foto GMM TST2 + GMM 935 ... 23
FIGURA 16: Foto GMM TST 2 + GMM 935.11MHz .. 25
FIGURA 17: Collegamento seriale RS 232 tra GMM 935 e PC .. 26
FIGURA 18: Tabella esempi .. 27
FIGURA 19: Finestra settaggio FLASH MAGIC (1 di 4) ... 28
FIGURA 20: Finestra settaggio FLASH MAGIC (2 di 4) ... 29
FIGURA 21: Finestra settaggio FLASH MAGIC (3 di 4) ... 29
FIGURA 22: Finestra settaggio FLASH MAGIC (4 di 4) ... 30
FIGURA 23: Caricamento sorgente con BASCOM 8051 ... 31
FIGURA 24: Configurazione compilatore BASCOM 8051 ... 31
FIGURA 25: Compilazione con BASCOM 8051 .. 32
FIGURA 26: Caricamento sorgente con µC/51 ... 32
FIGURA 27: Caricamento MakeFile (configurazione compilatore) con µC/51 33
FIGURA 28: Compilazione con µC/51 .. 33
FIGURA 29: Caricamento sorgente con LADDER WORK ... 34
FIGURA 30: Configurazione compilatore con LADDER WORK .. 34
FIGURA 31: Compilazione con LADDER WORK .. 35
FIGURA 32: Esempio collegamento seriale RS 232 .. 39
FIGURA 33: Esempio collegamento seriale TTL .. 39
FIGURA 34: Foto GMM 935 vista dall’alto ... 40
FIGURA 35: Foto GMM 935.11MHz vista dall’alto .. 41
FIGURA 36: Schema delle possibili connessioni ... 45
FIGURA B-1: Schema elettrico GMM TST 2 (1 di 3) ... 39
FIGURA B-2: Schema elettrico GMM TST 2 (2 di 3) ... 40
FIGURA B-3: Schema elettrico GMM TST 2 (3 di 3) ... 41
INTRODUZIONE

L’uso di questi dispositivi è rivolto - IN VIA ESCLUSIVA - a personale specializzato. Questo prodotto non è un componente di sicurezza così come definito dalla direttiva 98-73/CE.

I pin del Mini Modulo non sono dotati di protezione contro le cariche elettrostatiche. Esiste un collegamento diretto tra i pin del Mini Modulo e i rispettivi pin del microcontrollore. Il Mini Modulo è sensibile ai fenomeni ESD.
Il personale che maneggia i Mini Moduli è invitato a prendere tutte le precauzioni necessarie per evitare i possibili danni che potrebbero derivare dalle cariche elettrostatiche.

Scopo di questo manuale é la trasmissione delle informazioni necessarie all’uso competente e sicuro dei prodotti. Esse sono il frutto di un’elaborazione continua e sistematica di dati e prove tecniche registrate e validate dal Costruttore, in attuazione alle procedure interne di sicurezza e qualità dell’informazione.

I dati di seguito riportati sono destinati - IN VIA ESCLUSIVA - ad un utenza specializzata, in grado di interagire con i prodotti in condizioni di sicurezza per le persone, per la macchina e per l’ambiente, interpretando un’elementare diagnostica dei guasti e delle condizioni di funzionamento anomale e compiendo semplici operazioni di verifica funzionale, nel pieno rispetto delle norme di sicurezza e salute vigenti.

I dispositivi non possono essere utilizzati all'aperto. Si deve sempre provvedere ad inserire i moduli all'interno di un contenitore a norme di sicurezza che rispetti le vigenti normative. La protezione di questo contenitore non si deve limitare ai soli agenti atmosferici, bensì anche a quelli meccanici, elettrici, magnetici, ecc.
Per un corretto rapporto coi prodotti, é necessario garantire leggibilità e conservazione del manuale, anche per futuri riferimenti. In caso di deterioramento o più semplicemente per ragioni di approfondimento tecnico ed operativo, consultare direttamente l’Assistenza Tecnica autorizzata.

Al fine di non incontrare problemi nell’uso di tali dispositivi, é conveniente che l’utente - PRIMA DI COMINCIARE AD OPERARE - legga con attenzione tutte le informazioni contenute in questo manuale. In una seconda fase, per rintracciare più facilmente le informazioni necessarie, si può fare riferimento all’indice generale e all’indice analitico, posti rispettivamente all’inizio ed alla fine del manuale.
VERSIONE SCHEDA

Il presente manuale è riferito alla scheda GMM 935 revisione 300803. La validità delle informazioni riportate è quindi subordinata al numero di revisione della scheda in uso.

NUMERO DI REVISIONE DELLO STAMPATO

FIGURA 1: POSIZIONE DEL NUMERO DI REVISIONE E DEL NOME

NOTA SUL NOME DELLA SCHEDA

Si prega di notare, accanto al numero di revisione dello stampato, il nome della scheda. Tale nome è GMM 932.
La GMM 935 viene realizzata utilizzando lo stampato della GMM 932 su cui viene montato il chip P89LPC935.
Per distinguere una GMM 935 da una GMM 932 bisogna fare riferimento al tipo di CPU montata, come indicato qui di seguito:

CPU Montata: | P89LPC935 | P89LPC932
Nome scheda: | GMM 935 | GMM 932
INFORMAZIONI GENERALI

Il modulo GMM 935 (**grifo®*** Mini Modulo con P89LPC935), è basato sul microcontrollore **Philips P89LPC935**, ovvero un potente e completo microcontrollore dotato di **CPU (software compatibile con il diffusissimo 8051 INTEL)**, di memoria integrata (sia per codice che per dati) e di una ricca serie di periferiche hardware. Tra queste ricordiamo ad esempio un **watch dog**, numerose linee di I/O digitale, una linea seriale hardware, fino a 6 **timer counter** multifunzione con capacità di capture e compare, due linee di comunicazione sincrona secondo i protocolli **SPI ed I2C BUS**, 2 comparatori per segnali analogici, due **A/D converter** da quattro canali l'uno per un totale di otto canali, un **Real Time Clock** per tempistiche lunghe, ecc.

Il modulo ha già montati, nella sua ridottissima area, i componenti che servono a valorizzare le principali caratteristiche del microcontrollore ed a renderne utilizzabili tutte le modalità operative; inoltre monta ulteriori componenti che facilitano ed ampliano i possibili campi operativi, come una efficiente sezione alimentatrice ad ampio range.

Le possibili applicazioni dei moduli **GMM 935** sono innumerevoli. Si può citare, ad esempio, il funzionamento come piccoli **Nodi Intelligenti** con funzionalita' locali come il controllo con algoritmi PID di temperature, motori, valvole o come **sistemi a logica distribuita** tipo robot, automazioni su macchine di produzione in linea, automazioni di fabbriche di grosse dimensioni. Infine la **Teleacquisizione** e il **Telecontrollo** su medio brevi distanze, l’**Automazione Domestica** (accensione e spegnimento luci, controllo riscaldamento e condizionamento, supervisione elettrodomestici e servizi elettrici, sistemi di sorveglianza e controllo accesso), il **settore automobilistico** (accensione e spegnimento luci, controllo temperature, supervisione servizi per conducente, sistemi antifurto, diagnostica di funzionamento).

Da non dimenticare il settore **Didattico** infatti la **GMM 935** offre la possibilita' di apprendere il funzionamento di un microcontrollore della famiglia 51 e di sviluppare le sue applicazioni canoniche ad un costo veramente basso. A questo scopo è ideale la scheda di supporto **GMM TST 2**, che risolve i problemi dell'alimentazione, del collegamento seriale al P.C. di sviluppo, del collegamento delle linee del modulo e che allo stesso tempo dispone di una tastiera a matrice ed un display LCD che consentono di studiare e provare soluzioni a basso costo per l'interfacciamento operatore.

La facilita' di impiego è determinata anche dalla ricca serie di tools di sviluppo software basati su linguaggi sia a basso che alto livello che consentono di effettuare il **debug remoto** direttamente sulla scheda e che programmano direttamente la **FLASH** di bordo con l'ausilio di un normale P.C.

La GMM 935 è dotata di un connettore normalizzato, che le consente di essere montata immediatamente su schede di supporto come la **GMM TST 2** e la **GMB HR84** oppure di essere utilizzata su una scheda dell'utente, come macro componente. In entrambi i casi si riduce drasticamente il tempo di sviluppo: l'utente puo' avere il suo prototipo o addirittura il prodotto finito nel giro di una settimana.

Le caratteristiche di massima del modulo **GMM 935** sono:

- **Contenitore standard con zoccolo maschio 28 piedini** dual in line a passo 100 mils, largo 600 mils.
- **Ridottissimo ingombro**: 20,7 x 38,7 x 12,8 mm.
- **Circuito stampato a 4 strati** per ottimizzare le immunita' e le caratteristiche EMI.
- **Necessita di una sola alimentazione compresa tra 3,0 e 20 Vdc, 25mA massimi** (l'assorbimento puo' variare in base ai collegamenti del modulo).
- Disponibilita' di modalità operative a basso consumo come idle mode, power down mode e riduzione di clock.
- Microcontrollore Philips P89LPC935 (codice compatibile 8051) senza quarzo (frequenza interna 7.3728 MHz ±2.5%) o con quarzo esterno da 11,0592 MHz, ordinando l'opzione 0.11MHz.
- Elevate prestazioni grazie al ciclo macchina da 2 periodi di clock (6x).
- 8 KBytes FLASH per codice, 768 Bytes RAM per dati, 512 Bytes EEPROM per dati.
- 2 canali di Comparazione Analogica con diverse possibilità di configurazione ingressi ed uscite.
- Due A/D Converter da quattro canali con risoluzione 8 bit, per un totale di 8 canali.
- 15 sorgenti di interrupt con 4 livelli di priorità.
- 2 Timer Counter multifunzione, a 16 bits
- 4 canali CCU a 16 bits, con funzionalità di comparazione, cattura eventi, generazione segnali PWM, ecc.
- Fino a 23 linee di I/O digitale collegate al connettore. Alcune di queste linee hanno funzionalità multiple.
- Interfaccia di riconoscimento combinazioni predefinite via software su 8 delle 23 linee di I/O, in grado di generare interrupt.
- 1 linea comunicazione seriale hardware con protocollo fisico programmabile (Baud Rate fino a 115200 Baud, 8 o 9 bit di dati, 1 o 2 stop bit) bufferata in RS 232 od a livello TTL.
- Linea seriale caratterizzata da indirizzamento automatico e riconoscimento condizioni di errore che facilitano il collegamento in Rete di diverse unità.
- Controllore I²C BUS completamente configurabile via software.
- Interfaccia SPI programmabile per comunicazioni sincrone ad alta velocità.
- Un Real Time Clock per temporizzazioni lunghe e di precisione, attivo anche nelle modalità a basso assorbimento.
- Sezione di Watch Dog che conferisce al sistema controllato una sicurezza estrema in tutte le condizioni operative.
- 1 LED di segnalazione dello stato, gestito via software tramite una linea di I/O digitale.
- 1 Dip Switch ad 8 vie per la configurazione delle modalità operative del Mini Modulo.
- Possibilità di gestione della FLASH interna in modalità ISP (In System Programming), ovvero con modulo gia' montato, sfruttando la linea di comunicazione seriale.
- Non occorre nessun programmatore esterno in quanto, come in tutti i grifo® Mini Moduli, la FLASH del micro si Cancella, Programma, Verifica, Protegge usando la sola linea seriale di un normale Personal Computer.
- Per gestire la FLASH, su P.C. si utilizza il programma Flash Magic che si puo' reperire direttamente e gratuitamente alla Esacademy.
- Vasta disponibilità di software di sviluppo con cui realizzare il programma applicativo dell'utente, quali: Assemblatori (MCA51); compilatori C (uC/51, HTC51, SYS51CW, DDS Micro C51); compilatori BASIC (BASCOM 8051); compilatori PASCAL (SYS51PW); Ladder (LADDER WORK); ecc.
- Ricca serie di programmi dimostrativi ed esempi di utilizzo forniti sotto forma di sorgenti ampiamente commentati ed eseguibili, per i vari ambienti di sviluppo.

Viene di seguito riportata una descrizione dei blocchi funzionali della scheda, con indicate le operazioni effettuate da ciascuno di essi. Per una più facile individuazione di tali blocchi e per una verifica delle loro connessioni, fare riferimento alla figura 1.
LINEE DI I/O DIGITALE

Il Mini Modulo GMM 935 mette a disposizione 23 linee di I/O digitale TTL del microcontrollore Philips P89LPC935, ovvero i segnali tutti i segnali dei Port 0, 1, 2 ad eccezione del P1.6. Tali linee sono collegate direttamente al connettore a 28 vie con pin out standard grifo® Mini Modulo ed hanno quindi la possibilità di essere direttamente collegate a numerose schede d'interfaccia. Via software è definibile ed acquisibile la funzionalità e lo stato di queste linee, con possibilità di associarle anche alle periferiche della scheda (Timer Counter, Interrupt, FC BUS, SPI, ecc.), tramite una semplice programmazione di alcuni registri interni della CPU. Per maggiori informazioni fare riferimento ai paragrafi CONNESSIONI e DESCRIZIONE SOFTWARE DELLE PERIFERICHE DI BORDO.

COMUNICAZIONE SERIALE

Lascheda dispone sempre di una linea seriale hardware in cui il protocollo fisico (baud rate, stop bit, bit x chr, ecc.) é completamente settabile via software tramite la programmazione dei registri interni al microcontrollore di cui la scheda é provvista, quindi per ulteriori informazioni si faccia riferimento alla documentazione tecnica della casa costruttrice o alle appendici di questo manuale. La linea seriale é collegata al connettore CN1 a livello TTL o RS 232, grazie alla configurazione di alcuni dip switch di bordo quindi, quando la scheda deve essere collegata in una rete, collegata a distanza, o collegata ad altri dispositivi che usano diversi protocolli elettrici, si deve interporre un apposito driver seriale esterno (RS 232, RS 422, RS 485, Current loop, ecc.). Sul connettore CN1 oltre alle linee di ricezione e trasmissione sono disponibile anche altre linee di I/O gestibili via software che possono essere usate per definire la direzione della linea in caso di RS 485, per abilitare il driver di trasmissione in caso di RS 422 oppure come handshake hardware in caso di RS 232. Ad esempio può essere utilizzato il modulo MSI 01 che é in grado di convertire la linea seriale TTL in qualsiasi altro standard elettrico in modo comodo ed economico. Per maggiori informazioni consultare contattare direttamente la grifo® e leggere il paragrafo SELEZIONE COMUNICAZIONE SERIALE.

CLOCK

Nel modulo GMM 935 vi sono due circuiterie separate ed indipendenti basate su un oscillatore RC ed un quarzo, che si occupano della generazione del segnale di clock per il microcontrollore. Il primo genera una frequenza di 7.3728 MHz ±2.5% ed é sempre disponibile mentre il secondo genera una frequenza di 11,0592 Mhz ed é presente solo ordinando l'opzione .11MHz. La scelta di disporre di due circuiterie di clock distinte serve a ridurre i costi nella maggioranza delle applicazioni di medio alta velocità e di poter aumentare notevolmente le prestazioni nelle applicazioni che lo richiedono. Dal punto di vista delle prestazioni si ricorda che la GMM 935 ha un ciclo macchina di soli due cicli di clock e che se paragonata ad una CPU I51 classica, esegue il codice 6 volte più velocemente.
Figura 2: Schema a blocchi

CPU
P89LPC935

- **CPU**
- **768B RAM**
- **Flash**
- **512B EEPROM**
- **Watch DOG**
- **Port I/O**
- **ANALOG COMPARATOR**
- **PWM TIMER COUNTER**
- **Dual A/D**
- **UART**
- **23 Lines**
- **7 Lines**
- **6 Lines**
- **28 pins socket CN1**
- **2 Lines**
- **8 Lines**
- **2 Lines**
- **4 Lines**
- **2 Lines**
- **8 Lines**
- **23 Lines**
- **Internal MUX**
- **20 signals**
- **2 signals (TTL serial line)**
- **RS 232 DRIVER protection ±15 kV**
- **Wide Range Power Supply Section**
 - **2.6 ÷ 20 Vdc**
- **Working Mode Selector (RUN/DEBUG)**

LED

LED
DISPOSITIVI DI MEMORIA

La scheda è dotata di un massimo di 9,25K di memoria variamente suddivisi con un massimo di 8K Bytes FLASH EPROM, 256 Bytes di IRAM interna, 512 Bytes di XRAM ausiliaria esterna ed infine 512 Bytes di EEPROM.
La scelta delle memorie da utilizzare può avvenire in relazione all'applicazione da risolvere e quindi in relazione alle esigenze dell'utente.
Grazie alla EEPROM di bordo c'è inoltre la possibilità di mantenere i dati anche in assenza di alimentazione.
Questa caratteristica fornisce alla scheda la possibilità di ricordare in ogni condizione, una serie di parametri come ad esempio la configurazione o lo stato del sistema.
Qualora la quantità di memoria per dati risulti insufficiente (ad esempio per sistemi di data loggin) si possono sempre collegare dei dispositivi esterni di memoria nelle tecnologie SRAM, EEPROM e FLASH tramite le comode ed efficienti interfacce SPI ed I2C BUS della scheda.
Il mappaggio e la gestione delle risorse di memoria avviene direttamente all'interno del microcontrollore come descritto nella documentazione del componente o nell'APPENDICE A di questo manuale.

SEZIONE ALIMENTATRICE

Il modulo **GMM 935** è sempre provvisto di una efficiente sezione alimentatrice lineare, che provvede a fornire la tensione di alimentazione di +3,3 Vdc, in ogni condizione di carico e tensione d'ingresso.
Se necessario la sezione alimentatrice può non essere usata ma in questo caso la tensione di alimentazione descritta deve essere fornita dall’esterno, mentre nella configurazione base accetta una tensione ad ampio range, fino a +20 Vdc.
Questa caratteristica consente di utilizzare la maggioranza delle tensioni già disponibili nell'applicazione, senza aggiungere costi e complicazioni di alimentatori esterni.
La sezione alimentatrice è inoltre gestibile tramite un segnale presente sul connettore CN1 in modo da attivare il boot loader interno via software e potere quindi sviluppare il programma applicativo, con l’ausilio di un semplice Personal Computer.
Quest'ultimo una volta collegato al suddetto segnale è in grado di controllare l'alimentazione della **GMM 935** ed attivare quindi le necessarie modalità operative.
Sulla scheda sono state adottate tutte le scelte circuitali e componentistiche che tendono a ridurre la sensibilità ai disturbi ed i consumi, compresa la possibilità di far lavorare il microcontrollore in quattro diverse modalità a basso assorbimento.
Nella condizione ottimale si arriva ad un consumo minimo di 7 mA che ad esempio salvaguarda la durata di batterie, nel caso di applicazioni portatili.
Informazioni più dettagliate sono riportate nel capitolo **CARATTERISTICE ELETTRICHE** e nel paragrafo **ALIMENTAZIONE**.
FIGURA 3: FOTO GMM 935

FIGURA 4: FOTO GMM 935.11MHz
DIP SWITCH

Il Mini Modulo GMM 935 è dotato di un di un dip switch di bordo da otto vie il cui scopo è l'impostazione di vari parametri elettrici del Mini Modulo stesso e della modalità di funzionamento della scheda.

Infatti alcuni dip selezionano la modalità operativa RUN o DEBUG, ovvero vengono usati per stabilire se il microcontrollore deve eseguire il programma utente o il Boot Loader interno, come descritto nell'apposito paragrafo SELEZIONE MODO OPERATIVO.

Per ulteriori informazioni si veda anche il paragrafo JUMPER E DIP SWITCH.

A/D CONVERTERS

Il Mini Modulo GMM 935 è dotato due A/D converter da 4 canali multiplexati ognuno dei quali ha risoluzione di 8 bit, per un totale di otto canali.

Ogni A/D converter effettua la misura dell'ingresso selezionato portandolo ad un comparatore e confrontandolo con il segnale generato da un DAC interno.

Un registro ad approssimazioni successive (SAR) pilota il DAC e varia il segnale di confronto in retroazione con la risposta del comaratore (tecnica delle approssimazioni successive).

Ogni A/D converter ha quattro registri per il risultato delle conversioni, su ogni canale è possibile impostare un valore limite.

Quando il valore misurato supera il limite, un interrupt viene generato, se abilitato.

Inoltre, è possibile usare il DAC pilotato dal registro ad approssimazioni successive per generare un segnale analogico ad alta impedenza come uscita su un pin prefissato.
FIGURA 5: FOTO GMM 935 VISTA DAL BASSO
SPECIFICHE TECNICHE

CARATTERISTICHE GENERALI

Risorse di bordo:
- 23 linee di I/O digitale
- 2 ingressi analogici su comparatori
- 8 canali di A/D converter (4 x 2 A/D converters)
- 4 canali CCU per comparazione, cattura, PWM
- 1 sezione Watch Dog
- 2 Timer Counter multifunzione
- 1 interfaccia KBI di riconoscimento combinazioni
- 1 interfaccia SPI
- 1 interfaccia I²C BUS
- 1 sezione di Real Time Clock
- 15 sorgenti e 4 livelli di interrupt
- 1 linea seriale RS 232 o TTL
- 1 Dip Switch a 8 vie
- 1 LED di stato

Memorie:
- 8 KBytes FLASH EPROM per codice
- 256 Bytes IRAM interna per dati utente
- 512 Bytes XRAM esterna per dati utente
- 512 Bytes EEPROM per dati utente

CPU di bordo: Philips P89LPC935

Frequenza clock: 7,3728 MHz ±2.5%
11,0592 Mhz (ordinando opzione 11MHz)

Tempo di power on: 800 µsec massimi

Tempo intervento watch dog: programmabile fino a 2,5 sec.

Risoluzione A/D converter: 8 bits

Tempo di conversione A/D: minimo 4 µsec.

CARATTERISTICHE FISICHE

Dimensioni (L x A x P): 20,7 x 38,7 x 12,8 mm

Peso: 6,9 g

Connettori: zoccolo maschio da 28 piedini, passo 100 mils, largo 600 mils

Range di temperatura: da 0 a 50 gradi Centigradi

Umidità relativa: 20% fino a 90% (senza condensa)
CARATTERISTICHE ELETTRICHE

<table>
<thead>
<tr>
<th>Tensione di alimentazione:</th>
<th>+3,6÷+20 Vdc (usando sezione alimentatrice)</th>
<th>+3,0÷+3,6 Vdc (senza sezione alimentatrice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo di corrente:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimo:</td>
<td>7 mA</td>
<td>7 mA</td>
</tr>
<tr>
<td>normale:</td>
<td>17 mA</td>
<td>21 mA</td>
</tr>
<tr>
<td>massimo:</td>
<td>21 mA</td>
<td>25 mA</td>
</tr>
<tr>
<td>Tensione su linee di I/O:</td>
<td>0.0÷5.0 V</td>
<td></td>
</tr>
<tr>
<td>Impedenza ingressi analogici:</td>
<td>≈ 300 KΩ</td>
<td></td>
</tr>
</tbody>
</table>
INSTALLAZIONE

In questo capitolo saranno illustrate tutte le operazioni da effettuare per il corretto utilizzo della scheda. A questo scopo viene riportata l’ubicazione e la funzione dei jumpers, dei connettori, dei LED, dei dip switch, ecc. presenti sulla GMM 935.

SEGNALAZIONI VISIVE

La scheda GMM 935 è dotata delle segnalazioni visive descritte nella seguente tabella:

<table>
<thead>
<tr>
<th>LED</th>
<th>COLORE</th>
<th>FUNZIONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL1</td>
<td>Rosso</td>
<td>Visualizza lo stato della linea KBI6, CMPI, P0.6 del mini modulo e può essere usato come LED di attività, gestito via software.</td>
</tr>
</tbody>
</table>

FIGURA 6: TABELLA DELLE SEGNALAZIONI VISIVE

La funzione principale di questo LED è quella di fornire un'indicazione visiva dello stato della scheda, facilitando quindi le operazioni di debug e di verifica di funzionamento di tutto il sistema. Per una più facile individuazione di tali segnalazioni visive, si faccia riferimento alla figura 12, mentre per ulteriori informazioni sull'attivazione dei LED si faccia riferimento al paragrafo LED DI ATTIVITA'.

CONNESSIONI

Il modulo GMM 935 è provvisto di 1 connettore con cui vengono effettuati tutti i collegamenti con il campo e con le altre schede del sistema di controllo da realizzare. Di seguito viene riportato il suo pin out ed il significato dei segnali collegati; per una facile individuazione di tale connettore, si faccia riferimento alla figura 12, mentre per ulteriori informazioni a riguardo del tipo di connessioni, fare riferimento alle figure successive che illustrano il tipo di collegamento effettuato a bordo scheda e presentano alcuni dei collegamenti più frequentemente richiesti.

CN1 - CONNETTORE CON SEGNALI DEL MINI MODULO

Il connettore CN1 è uno zoccolo maschio da 28 piedini con passo 100 mils e larghezza 600 mils. Su questo connettore sono presenti tutti i segnali d'interfacciamento del mini modulo come l'alimentazione, le linee di I/O, le linee di comunicazione seriale sincrona ed asincrona, i segnali delle periferiche hardware di bordo, le linee di selezione del modo operativo, ecc.

Alcuni piedini di questo connettore hanno una duplice o triplice funzione infatti, via software, alcune sezioni interne della CPU possono essere multiplexate con i segnali di I/O e per completezza la seguente figura li riporta tutti. I segnali presenti su CN1 sono quindi di diversa natura, come descritto nel successivo paragrafo INTERFACCIAMENTO CONNETTORI CON IL CAMPO e seguono il pin out standardizzato dei Mini Moduli grifo®.
Al fine di evitare problemi di conteggio e numerazione la figura 7 descrive i segnali direttamente sulla vista dall’alto della **GMM 935**, inoltre la serigrafia riporta la numerazione sui 4 angoli della scheda sia sul lato superiore che inferiore.

Figura 7: CN1 - ZOCCOLO CON SEGNALI DEL MINI MODULO

Legenda:

<table>
<thead>
<tr>
<th>Señal</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOT (RTS)</td>
<td>I - Segnale di selezione della modalità operativa, da collegare al segnale RTS bufferato in RS 232, del P.C. di sviluppo.</td>
</tr>
<tr>
<td>POW (DTR)</td>
<td>I - Segnale di gestione dell'alimentazione della CPU, da collegare al segnale DTR bufferato in RS 232, del P.C. di sviluppo.</td>
</tr>
<tr>
<td>RX RS232</td>
<td>I - Linea di ricezione seriale bufferata in RS 232</td>
</tr>
<tr>
<td>TX RS232</td>
<td>O - Linea di trasmissione seriale bufferata in RS 232</td>
</tr>
<tr>
<td>RX TTL</td>
<td>I - Linea di ricezione seriale TTL</td>
</tr>
<tr>
<td>TX TTL</td>
<td>O - Linea di trasmissione seriale TTL</td>
</tr>
<tr>
<td>Pn.x</td>
<td>I/O - Segnale x del Port n di I/O digitale della CPU</td>
</tr>
<tr>
<td>SCL</td>
<td>I/O - Linea clock dell'interfaccia I2C BUS</td>
</tr>
<tr>
<td>SDA</td>
<td>I/O - Linea dati dell'interfaccia I2C BUS</td>
</tr>
<tr>
<td>Tn</td>
<td>I - Segnale di conteggio per Timer n della CPU</td>
</tr>
<tr>
<td>/INTn</td>
<td>I - Linea d'interrupt n della CPU</td>
</tr>
<tr>
<td>MOSI</td>
<td>I/O - Linea di uscita dati dell'interfaccia SPI</td>
</tr>
<tr>
<td>MISO</td>
<td>I/O - Linea di ingresso dati dell'interfaccia SPI</td>
</tr>
<tr>
<td>/SS</td>
<td>I - Linea di selezione unità slave dell'interfaccia SPI</td>
</tr>
<tr>
<td>SPICLK</td>
<td>I/O - Linea di clock dell'interfaccia SPI</td>
</tr>
<tr>
<td>KBIn</td>
<td>I - Ingresso digitale n con riconoscimento combinazioni</td>
</tr>
<tr>
<td>CMPn</td>
<td>O - Uscita del comparatore analogico n</td>
</tr>
<tr>
<td>CINnA</td>
<td>I - Primo ingresso positivo del comparatore analogico n</td>
</tr>
<tr>
<td>CINnB</td>
<td>I - Secondo ingresso positivo del comparatore analogico n</td>
</tr>
<tr>
<td>CMPREF</td>
<td>I - Ingresso negativo dei comparatori analogici</td>
</tr>
<tr>
<td>ADnm</td>
<td>I - Ingresso m-esimo (da 0 a 3) dell'n-esimo A/D converter</td>
</tr>
<tr>
<td>ICA</td>
<td>I - Ingresso per cattura e comparazione sezione CCU</td>
</tr>
<tr>
<td>OCN</td>
<td>O - Uscita di comparazione n della sezione CCU</td>
</tr>
<tr>
<td>+Vdc POW</td>
<td>I - Linea di alimentazione da +3,0 a +20 Vdc (vedi ALIMENTAZIONE)</td>
</tr>
<tr>
<td>GND</td>
<td>= - Linea di massa</td>
</tr>
<tr>
<td>N.C.</td>
<td>= - Non collegato</td>
</tr>
</tbody>
</table>

![Diagrama del CN1](image-url)
INTERFACCIAZIONE CONNETTORI CON IL CAMPO

Al fine di evitare eventuali problemi di collegamento della scheda con tutta l’elettronica del campo a cui **GMM 935** si deve interfacciare, si devono seguire le informazioni riportate nei vari paragrafi e le relative figure che illustrano le modalità interne di connessione.

- Per i segnali che riguardano la comunicazione seriale con il protocollo RS 232 fare riferimento alle specifiche standard dello stesso.
- Tutti i segnali a livello TTL possono essere collegati a linee dello stesso tipo riferite alla massa digitale della scheda. Il livello 0V corrisponde allo stato logico 0, mentre il livello 3÷5V corrisponde allo stato logico 1. La connessione di tali linee ai dispositivi del campo (fine corsa, encoder, elettrovalvole, relé di potenza, ecc.) deve avvenire tramite apposite interfacce di potenza che preferibilmente devono essere optoisolate in modo da mantenere isolata la logica del Mini Modulo dagli eventuali disturbi dell’elettronica di potenza.
- I segnali d’ingresso ai comparatori analogici devono essere collegati a segnali analogici a bassa impedenza che rispettino il range di variazione ammesso ovvero da 0 a 3.0 V.
- I segnali d’ingresso agli A/D converter devono essere collegati a segnali analogici a bassa impedenza che rispettino il range di variazione ammesso ovvero da 0 a 3.5 V.
- I segnali PWM generati dalle sezioni Timer Counter e CCU, sono a livello TTL e devono essere quindi opportunamente bufferati per essere interfacciati all’azionamento di potenza. Le classiche ciruiterie da interporre possono essere dei semplici driver di corrente se è ancora necessario un segnale PWM, oppure un integratore qualora sia necessario un segnale analogico.
- Anche i segnali I²C BUS ed SPI sono a livello TTL, come definito dallo stesso standard; per completezza si ricorda solo che dovendo realizzare una rete con numerosi dispositivi e con una discreta lunghezza si deve studiare attentamente il collegamento oppure configurare lo stadio d’uscita, le molteplici modalità operative ed il bit rate programmabili opportunamente in modo d-apoter comunicare in ogni condizione operativa.

INTERRUPTS

Una caratteristica peculiare della **GMM 935** è la notevole potenza nella gestione delle interruzioni. Di seguito viene riportata una breve descrizione di quali sono i dispositivi che possono generare interrupts e con quale modalità; per quanto riguarda la gestione di tali interrupts si faccia riferimento ai data sheets del microprocessore oppure all’appendice A di questo manuale.

- Pin 7 di CN1 -> Genera un INT0 = P1.3 sulla CPU.
- Pin 18 di CN1 -> Genera un INT1 = P1.4 sulla CPU.
- Periferiche della CPU-> Generano un interrupt interno. In particolare le possibili sorgenti d’interrupt interno sono le sezioni: Timer Counter, CCU, UART, comparatore analogico, Watch dog, Real Time Clock, I²C BUS, SPI, riconoscimento combinazioni, EEPROM, A/D converters.

Incorporata nel microcontrollore si trova la logica di gestione degli interrupt che consente di attivare, disattivare, mascherare le 15 sorgenti d’interrupt e che regolamenta l’attivazione contemporanea di più interrupts. In questo modo l’utente ha sempre la possibilità di rispondere in maniera efficace e veloce a qualsiasi evento esterno, stabilendo anche la priorità delle varie sorgenti.
FIGURA 8: PIANTA COMPONENTI (LATO SUPERIORE)

FIGURA 9: PIANTA COMPONENTI (LATO INFERIORE)
JUMPER E DIP SWITCH

A bordo del Mini Modulo GMM 935 sono presenti un dip switch ad 8 vie ed un jumper, con cui è possibile effettuare alcune selezioni che riguardano il modo di funzionamento dello stesso. Nelle successive figure ne è riportato l’elenco, l’ubicazione e la loro funzione nelle varie modalità di connessione.

Nelle seguenti tabella l’* (asterisco) indica la connessione di default, ovvero quella impostata in fase di collaudo, con cui la scheda viene fornita.

Per individuare la posizione degli elementi di configurazione si faccia riferimento alla figura 12.

<table>
<thead>
<tr>
<th>SWITCH JUMPER</th>
<th>POSIZIONE</th>
<th>UTILIZZO</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSW1.2</td>
<td>ON</td>
<td>Collega segnale TX RS232 , TX TTL , P1.0 su CN1 al driver seriale RS 232. Usato in abbinamento a DSW1.4. Non collega segnale TX RS232 , TX TTL , P1.0 su CN1 al driver seriale RS 232 consentendo il collegamento diretto al microcontrollore. Usato in abbinamento a DSW1.4.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSW1.3</td>
<td>ON</td>
<td>Collega segnale RX RS232 , RX TTL , P1.1 su CN1 al driver seriale RS 232. Usato in abbinamento a DSW1.1,5. Non collega segnale RX RS232 , RX TTL , P1.1 su CN1 al driver seriale RS 232 consentendo il collegamento diretto al microcontrollore. Usato in abbinamento a DSW1.1,5.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSW1.4</td>
<td>ON</td>
<td>Collega segnale TX RS232 , TX TTL , P1.0 su CN1 direttamente al microcontrollore, eliminando il driver seriale RS 232. Usato in abbinamento a DSW1.2. Non collega segnale TX RS232 , TX TTL , P1.0 su CN1 al microcontrollore, consentendo l’uso del driver seriale RS 232. Usato in abbinamento a DSW1.2.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSW1.5</td>
<td>ON</td>
<td>Collega segnale RX RS232 , RX TTL , P1.1 su CN1 direttamente al microcontrollore, eliminando il driver seriale RS 232. Usato in abbinamento a DSW1.1,3. Non collega segnale RX RS232 , RX TTL , P1.1 su CN1 al microcontrollore, consentendo l’uso del driver seriale RS 232. Usato in abbinamento a DSW1.1,3.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSW1.6</td>
<td>ON</td>
<td>Collega segnale di alimentazione a 3,3 Vdc direttamente al pin 28 di CN1, eliminando lo stabilizzatore di tensione a bordo scheda. Usato in abbinamento a JS1. Non collega segnale di alimentazione a 3,3 Vdc al pin 28 di CN1.</td>
<td>*</td>
</tr>
</tbody>
</table>

FIGURA 10: TABELLA JUMPER E DIP SWITCH (1^ PARTE)
<table>
<thead>
<tr>
<th>SWITCH JUMPER</th>
<th>POSIZIONE</th>
<th>UTILIZZO</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSW1.7</td>
<td>ON</td>
<td>Collega circuiteria per attivazione Boot Loader del Mini Modulo.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Non collega circuiteria per attivazione Boot Loader del Mini Modulo.</td>
<td></td>
</tr>
<tr>
<td>DSW1.8</td>
<td>ON</td>
<td>Mantiene alimentato il Mini Modulo, eliminando la gestione tramite la linea POW di CN1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Non mantiene alimentato il Mini Modulo, abilitando la gestione tramite la linea POW di CN1.</td>
<td></td>
</tr>
<tr>
<td>JS1</td>
<td>Non connesso</td>
<td>Non collega segnale di alimentazione a 3,3 Vdc al pin 28 di CN1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connesso</td>
<td>Collega segnale di alimentazione a 3,3 Vdc direttamente al pin 28 di CN1, eliminando lo stabilizzatore di tensione a bordo scheda. Usato in abbinamento al DSW1.6.</td>
<td></td>
</tr>
</tbody>
</table>

Figura 11: TABELLA JUMPER E DIP SWITCH (2ª PARTE)

![Diagram of components](image-url)

Figura 12: DISPOSIZIONE LED, DIP SWITCH, JUMPER, CONNETTORI, ecc.
JUMPER A STAGNO

La connessione di default dei jumpers a stagno denominati JSxx, è effettuata con una sottile pista sul lato stagnature. Quindi, se tale configurazione deve essere variata, si deve prima tagliare la pista con un taglierino affilato e poi effettuare la connessione richiesta con uno stagnatore di bassa potenza utilizzando dello stagno non corrosivo.

ALIMENTAZIONE

La GMM 935 dispone di una efficiente circuiteria che si presta a risolvere in modo comodo ed efficace il problema dell'alimentazione della scheda in qualsiasi condizione di utilizzo.

Di seguito vengono riportate le possibili configurazioni di alimentazione:

Sezione alimentatrice collegata:

<table>
<thead>
<tr>
<th>JS1</th>
<th>DSW1.6</th>
<th>+Vdc POW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non connesso</td>
<td>OFF</td>
<td>+3,6÷+20 Vdc</td>
</tr>
</tbody>
</table>

In questa configurazione la sezione alimentatrice lineare di bordo è collegata e consente di alimentare il Mini Modulo con una tensione ad ampio range che deve essere collegata ai pin 14 (GND) e 28 (+Vdc POW) di CN1. In questo modo si può usare la tensione fornita da dispositivi standard del settore industriale come alimentatori, batterie, batteria dell'autoveicolo, celle solari, ecc.

Sezione alimentatrice non collegata:

<table>
<thead>
<tr>
<th>JS1</th>
<th>DSW1.6</th>
<th>+Vdc POW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connesso</td>
<td>ON</td>
<td>+3,0÷+3,6 Vdc (con linea seriale in RS 232)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+2,6÷+3,6 Vdc (con linea seriale in TTL)</td>
</tr>
</tbody>
</table>

In questa configurazione la sezione alimentatrice lineare di bordo non è collegata, quindi al Mini Modulo deve essere fornita una tensione stabilizzata variabile nei piccoli range sopra riportati, che deve essere collegata ai pin 14 (GND) e 28 (+Vdc POW) di CN1. In questo modo ad esempio si può usare la tensione fornita da: batterie stilo o al Litio, da stabilizzatori esterni, da sezioni alimentatrici a bassa tensione già presenti sulla scheda che ospita la GMM 935, ecc.

La configurazione della sezione alimentatrice deve essere effettuata dall'utente in base alle sue esigenze e disponibilità; si ricorda comunque che la configurazione con sezione alimentatrice collegata è quella normale di vendita, in modo da offrire una maggior flessibilità e sicurezza durante i primi utilizz.

Al fine di ridurre i consumi della scheda si possono utilizzare le modalità operative di power down, idle e riduzione di clock della CPU. Queste modalità consentono di definire la frequenza di lavoro della CPU e l'attivazione delle sue periferiche interne e possono essere selezionate programmando gli appositi registri interni del microprocessore. Il programma applicativo sviluppato dall'utente può quindi ridurre il consumo sull'alimentazione ed eventualmente ripristinare il funzionamento normale in corrispondenza di un evento presatbitbilo come ad esempio un interrupt, variazione di un ingresso digitale, intervallo di tempo trascorso, ecc.

Per ulteriori informazioni si faccia riferimento al paragrafo “CARATTERISTICHE ELETTRICHE”.
CONFIGURAZIONI PER SCHEDE DI SUPPORTO

Il Mini Modulo GMM 935 può essere utilizzato come macro componente per alcune schede di supporto sia sviluppate dall’utente che già disponibili nel carteggio grifo®. Nei successivi paragrafi vengono illustrate le configurazioni delle schede di supporto più interessanti.

UTILIZZO CON IL MODULO BLOCK GMB HR84

La GMB HR84 si distingue per essere una scheda che fornisce ai Mini Moduli da 28 pin fino ad 8 ingressi optoisolati; 4 uscite a relè, la possibilità di montaggio meccanico su barra ad omega ed il cablaggio tramite comode morsettiere. La descrizione completa del prodotto è disponibile nel relativo foglio e manuale tecnico, mentre in questo paragrafo sono riportate le potenzialità offerte e la configurazione richiesta da questa accoppiata.

La GMB HR84 permette facilmente di:
- alimentare il Mini Modulo tramite l'alimentatore di bordo;
- riportare otto linee dei port di I/O su ingressi bufferati optoisolati indifferenmente NPN o PNP, visualizzati tramite LEDs verdi; essendo le linee multiplexate con le periferiche interne è immediato creare funzioni evolute come contatori, riconoscimento combinazioni, ecc.;
- riportare altre quattro linee dei port di I/O su uscite bufferate a relè visualizzate tramite LEDs rossi; essendo le linee multiplexate con le periferiche interne, è immediato creare funzioni evolute come onde quadre; temporizzatori; ecc.;
- avere le linee dell’I²C BUS e dell’alimentazione a +5 Vdc su un connettore dedicato;
- collegare immediatamente la linea RS 232 tramite un comodo connettore a vaschetta;
- bufferare comodamente i segnali della seriale TTL in RS 422, RS 485 o Current Loop;
- collegare linea SPI e segnali PWM su un connettore AMP
- programmare la FLASH in modalità ISP;

FIGURA 14: FOTO GMB HR 84 + GMM 935.11MHz

La seguente configurazione consente di usare l’accoppiata GMB HR84 + GMM 935 nella loro versione base, ovvero in modalità RUN, con linea seriale in RS 232:

<table>
<thead>
<tr>
<th>Configurazione GMM 935</th>
<th>Configurazione GMB HR84</th>
</tr>
</thead>
<tbody>
<tr>
<td>JS1 = non connesso</td>
<td>J1 = non connesso</td>
</tr>
<tr>
<td>DSW1.1 = ON</td>
<td>J2 = 2-3</td>
</tr>
<tr>
<td>DSW1.2 = ON</td>
<td>J3 = 2-3</td>
</tr>
<tr>
<td>DSW1.3 = ON</td>
<td>J4 = 2-3</td>
</tr>
<tr>
<td>DSW1.4 = OFF</td>
<td>J5 = indifferente</td>
</tr>
<tr>
<td>DSW1.5 = OFF</td>
<td>J6 = 1-2</td>
</tr>
<tr>
<td>DSW1.6 = OFF</td>
<td>J7 = indifferente</td>
</tr>
<tr>
<td>DSW1.7 = OFF</td>
<td>J8 = non connesso</td>
</tr>
<tr>
<td>DSW1.8 = ON</td>
<td>J9 = non connesso</td>
</tr>
<tr>
<td></td>
<td>J10 = 1-2</td>
</tr>
<tr>
<td></td>
<td>J11 = 1-2</td>
</tr>
</tbody>
</table>

Cavo collegamento seriale con P.C. di sviluppo = CCR 9+9 R (ovvero cavo prolunga rovesciato con vaschetta D9 Femmina e D9 Maschio).
UTILIZZO CON LA SCHEDA GMM TST2

Nel carteggio delle schede grifo® la GMM TST2 si distingue per essere la scheda di valutazione e primo utilizzo progettata esplicitamente per fare da supporto ai Mini Moduli sia da 28 che da 40 pins. La descrizione completa del prodotto è disponibile nel relativo foglio e manuale tecnico, mentre in questo paragrafo sono riportate le potenzialità offerte e la configurazione richiesta da questa accoppiata.

FIGURA 15: FOTO GMM TST2 + GMM 935
La **GMM TST2** permette facilmente di:

- alimentare il Mini Modulo tramite l'alimentatore di bordo;
- riportare le linee dei port di I/O su comodi connettori a scatolino compatibile con lo standard **I/O ABACO®**;
- collegare immediatamente le linee RS 232 tramite un comodo connettore a vaschetta;
- impostare e visualizzare lo stato di 2 linee di I/O del microcontrollore tramite pulsanti e LEDs di diversi colori;
- generare feedback sonori mediante un buzzer autoscillante a bordo scheda;
- sviluppare rapidamente e confortevolmente applicazioni di interfaccia utente avvalendosi della tastiera a matrice 4x4=16 tasti e del display LCD retroilluminato da 2 righe di 20 caratteri;
- realizzare facilmente una scheda di supporto che soddisfi le esigenze dell'utente partendo dagli schemi elettrici forniti;
- programmare la FLASH in modalità ISP;

La seguente configurazione consente di usare l'accoppiata **GMM TST 2 + GMM 935** nella loro versione base, ovvero in modalità RUN, con linea seriale in RS 232:

<table>
<thead>
<tr>
<th>Configurazione GMM 935</th>
<th>Configurazione GMM TST 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>JS1 = non connesso</td>
<td>J1 = 1-2</td>
</tr>
<tr>
<td>DSW1.1 = ON</td>
<td>J2 = 2-3</td>
</tr>
<tr>
<td>DSW1.2 = ON</td>
<td>J3 = 2-3</td>
</tr>
<tr>
<td>DSW1.3 = ON</td>
<td>J4 = 2-3 o non connesso</td>
</tr>
<tr>
<td>DSW1.4 = OFF</td>
<td>J5 = 2-3 o non connesso</td>
</tr>
<tr>
<td>DSW1.5 = OFF</td>
<td>J6 = 2-3 o non connesso</td>
</tr>
<tr>
<td>DSW1.6 = OFF</td>
<td>J7 = 2-3 o non connesso</td>
</tr>
<tr>
<td>DSW1.7 = OFF</td>
<td></td>
</tr>
<tr>
<td>DSW1.8 = ON</td>
<td></td>
</tr>
</tbody>
</table>

Cavo collegamento seriale con P.C. di sviluppo = CCR 9+9 E (ovvero cavo prolunga dritto con vaschetta D9 Femmina e D9 Maschio).
Figura 16: Foto GMM TST 2 + GMM 935.11MHz
COME INIZIARE

In questa fase si ipotizza di poter disporre di una GMM TST 2 o di una GMB HR84 ove montare il Mini Modulo GMM 935.

Una delle caratteristiche più interessanti è la possibilità di programmare la FLASH del microcontrollore P89LPC935 attraverso la connessione seriale RS 232, senza rimuovere il Mini Modulo dallo zoccolo ZC1.

A) COLLEGAMENTO SERIALE TRA GMM 935 ED IL PC

A1) Per prima cosa dovete realizzare fisicamente il collegamento seriale tra il Mini Modulo GMM 935 ed il PC. Per questo bisogna costruire un cavo che effettui il collegamento descritto in figura 17.

A2) Preparare un emulatore di terminale sul PC, configurarlo per usare la porta seriale collegata al GMM 935 con 19200 baud, 8 bit di dati, 1 bit di stop, nessuna partià. Se avete il BASCOM 8051 potete usare l'emulatore terminale incorporato nel compilatore.

A3) Impostare la modalità DEBUG, ovvero posizionare il dip switch DSW1.1 di GMM 935 in posizione ON.

A4) Alimentare GMM TST 2 o GMB HR84. Per prima cosa dovete individuare i programmi demo del Mini Modulo GMM 935 sul CD grifo®. Uno dei file si chiama "iod935i.hex" ed è raggiungibile a partire dalla pagina iniziale seguendo il percorso: Italiano | Programmi di Esempio | Programmi Mini Moduli e Mini Block | GMM 935.
PROGRAMMI PER MINI MODULI E MINI BLOCK

<table>
<thead>
<tr>
<th>TIPO DI SCHEDA</th>
<th>GET</th>
<th>ASM</th>
<th>Ladder</th>
<th>Abaco® Link</th>
<th>BUS</th>
<th>BASIC</th>
<th>BASIC</th>
<th>BASIC</th>
<th>PIC</th>
<th>BASIC</th>
<th>MEGA</th>
<th>52</th>
<th>C</th>
<th>PASCAL</th>
<th>TIPO DI CPU / BLOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>V A R I</td>
<td></td>
</tr>
<tr>
<td>CAN GM0</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>Amel 789C51e033 - 8051 Code</td>
</tr>
<tr>
<td>CAN GM1</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>Amel 789C51e011 - 8051 Code</td>
</tr>
<tr>
<td>CAN GM2</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>Amel 789C51e022 - 8051 Code</td>
</tr>
<tr>
<td>GMM 5115</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>Amel/789C5115 - 8051 Code</td>
</tr>
<tr>
<td>GMM 876</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>Microchip PIC16F876A - PIC 14 Code</td>
</tr>
<tr>
<td>GMM 932</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>PHILIPS 78HC932 - 8051 Code</td>
</tr>
<tr>
<td>GMM AC2</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>Amel 789C51AC2 - 8051 Code</td>
</tr>
<tr>
<td>GMM AM08</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>Amel ATMega88 - AVR Code</td>
</tr>
<tr>
<td>GMM AM32</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>Amel ATMega32 - AVR Code</td>
</tr>
<tr>
<td>GMR HR284</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>Mini Block 8 input opto 4 output relé</td>
</tr>
<tr>
<td>GMM HR16S</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>Mini Block 16 input opto 8 output relé</td>
</tr>
</tbody>
</table>

Figura 18: Tabelle esempi
B) RIPROGRAMMAZIONE DELLA FLASH

B1) Localizzare e salvare in una posizione comoda sul disco rigido del PC il file si chiama "IOD932I.HEX".

B2) Sempre sul CD grifo® ricevuto localizzare e quindi installare sul disco rigido del P.C. di sviluppo il programma di utility FLASH MAGIC. Questo gestisce la FLASH EPROM sulla GMM 935 tramite il semplice collegamento seriale realizzato al punto A1.

B3) Impostare modalità DEBUG, ovvero posizionare DSW1.7=ON e DSW1.8=OFF.

B4) Chiudere ogni programma che possa usare la linea seriale COMx del P.C. di sviluppo, come l'emulatore di terminale HYPERTERMINAL.

B5) Fornire alimentazione.

B7) Nel riquadro 1 effettuare i seguenti settaggi:
 Com Port = COMx del P.C. di sviluppo collegata al punto A1
 Baud Rate = 9600
 Device = 89LPC935
 Oscillator Freq. (MHz) = 7.3728 se sta usando GMM 935 senza quarzo
 Oscillator Freq. (MHz) = 11.0592 se sta usando GMM 935 con opzione .11MHz

B8) Selezionare l’opzione "Advanced options" dal menu “Options” e nella finestra che appare effettuare i seguenti settaggi:
 Hardware Config | Use DTR and RTS to enter ISP mode
 Hardware Config | Hardware = Keil MCB 900
 Security | Protect ISP Code

ed una volta confermate le richieste presentate, verificare che avvenga la comunicazione con il Boot Loader della scheda.

FIGURA 19: FINESTRA SETTAGGIO FLASH MAGIC (1 DI 4)
B9) Nel riquadro 2 effettuare i seguenti settaggi:
 - Erase all Flash

B10) Nel riquadro 3 caricare il file da programmare IOD9351.HEX descritto al punto B1.

B11) Nel riquadro 4 disattivare tutti gli eventuali settaggi.

B12) Nel riquadro 5 avviare la programmazione premendo il pulsante "Start", confermare (Si) la richiesta di cancellazione modificata per proteggere il codice ISP e verificare che tutte le fasi avvengano correttamente.
B13) Uscire dal FLASH MAGIC premendo la X nell’angolo in alto a destra della finestra, in modo da salvare i settaggi effettuati e non doverli quindi rieffettuare nei successivi usi.

B14) Avviare l’emulatore di terminale configurato come in A2 e verificare che il programma applicativo appena memorizzato venga eseguito dalla FLASH interna. Usando l’emulatore di terminale HYPERTERMINAL, il settaggio può essere effettuato anche con un semplice doppio click sull’icona di un’apposito file di configurazione (file con estensione .HT) che può essere creato direttamente da HYPERTERMINAL, con l’opzione di salvataggio del menù "File".

C) CREAZIONE DEL CODICE ESEGUIBILE DEL PROGRAMMA DEMO

C1) Installare sul disco rigido del P.C. l’ambiente di sviluppo scelto per realizzare programma applicativo. Come descritto nel capitolo DESCRIZIONE SOFTWARE sono disponibili diversi ambienti in modo da soddisfare le richieste di ogni utente, ma qui si ricordano quelli più diffusi come il BASCOM 8051, µC/51, LADDER WORK, ecc.

C2) Sul CD grifo® oltre al file con il codice eseguibile del demo, descritto al punto B1, sono presenti anche il/i file sorgenti dello stesso. Questi hanno un’estensione che identifica l’ambiente di sviluppo usato (ad esempio IOD935LBAS per il BASCOM 8051 oppure IOD935LC per il µC/51) e sono opportunamente organizzati nelle tabelle degli esempi presenti sul CD, assieme agli eventuali file di definizione (89LPC935.DAT per il BASCOM 8051, 89LPC935.H per il µC/51, ecc.). Una volta localizzati questi file devono essere salvati in una posizione comoda sul disco rigido del P.C. di sviluppo.

C3) Ricompilare il sorgente usando l’ambiente di sviluppo scelto, in modo da ottenere il file IOD935L.HEX identico a quello presente sul CD grifo® e già usato nei punti B. Questa operazione si differenzia notevolmente a seconda dell’ambiente di sviluppo utilizzato, pertanto qui di seguito vengono esposti i passi dettagliati:
I) Ricompilazione con BASCOM 8051

Ia) Una volta entrati nell’IDE del BASCOM, caricare il programma sorgente con il menu File | Open:

![Select file to open](image1)

FIGURA 23: CARICAMENTO SORGENTE CON BASCOM 8051

Ib) Dal menu Options | Compiler | Misc impostare il valore Byte End a A0, come anche suggerito nel commento del sorgente, e premere OK:

![BASCOM 8051 Options](image2)

FIGURA 24: CONFIGURAZIONE COMPILATORE BASCOM 8051
Ic) Compilare il sorgente premendo il pulsante con il disegno del circuito integrato. Per una corretta compilazione la presenza del file 89lpc935.dat nella cartella di installazione del BASCOM:

FIGURA 25: COMPILAZIONE CON BASCOM 8051

II) Ricompilazione con µC/51

IIa) Una volta aperto l'editor standard uedit.exe, caricare il programma sorgente premendo il quinto pulsante da sinistra, la presenza del file 89lpc935.h nella stessa cartella del sorgente Iod935i.c è indispensabile per una corretta compilazione:

FIGURA 26: CARICAMENTO SORGENTE CON µC/51

IIb) Aprire anche l'editor dei MakeFile, ovvero il programma umshell.exe, e caricare il file Iod935i.mak con il menu File | Load:
IIc) Compilare il sorgente premendo il primo pulsante da destra:

FIGURA 27: CARICAMENTO MAKEFILE (CONFIGURAZIONE COMPILATORE) CON µC/51

FIGURA 28: COMPILAZIONE CON µC/51
III) Ricompilazione con LADDER WORK

IIIa) Una volta aperto l'IDE del LADDER WORK, aprire lo schematico Iod935i.pjn con il menu File | Open:

![Image of schematicopened through File | Open]

FIGURA 29: CARICAMENTO SORGENTE CON LADDER WORK

IIIb) Assicurarsi che il profilo scelto per la compilazione sia quello relativo al Mini Modulo GMM 935:

![Image of configuration through Select Active Profile]

FIGURA 30: CONFIGURAZIONE COMPILATORE CON LADDER WORK
IIIc) Compilare il sorgente premendo il primo pulsante da destra:

FIGURA 31: COMPILAZIONE CON LADDER WORK

C4) Rieffettuare il salvataggio del file ottenuto nella FLASH del Mini Modulo, ripetendo i punti B6÷B14.

In merito alle impostazioni del FLASH MAGIC si ricorda che queste possono essere effettuate solo la prima volta infatti lo stesso programma mantiene gli ultimi settaggi utilizzati.

Se durante l'esecuzione dei passi sopra elencati si presenta un problema o un'anomalia si consiglia all'utente di rileggere e ripetere i passi con attenzione e qualora il malfunzionamento persista, di contattare direttamente la grifo®.

In caso di esecuzione corretta di tutte le fasi sopra descritte l'utente ha realizzato e salvato il suo primo programma applicativo coincidente con il demo della GMM 935.

A questo punto è possibile modificare il sorgente del/dei programmi demo in modo da soddisfare le richieste dell'applicazione da realizzare e provarla con i passi sopra elencati (da B6 a C3) in modo ciclico, fino a quando il programma applicativo realizzato è perfettamente funzionante. Raggiunto questo obiettivo si può eliminare il P.C. di sviluppo, ovvero:

D) PREPARAZIONE DEFINITIVA DELL'APPLICAZIONE

D1) Impostare modalità RUN (DSW1.7=OFF e DSW1.8=ON) e scollegare P.C. di sviluppo.
SELEZIONE MODO OPERATIVO

Come descritto nella figura 10 e nei precedenti paragrafi i dip switch DSW1.7 e DSW1.8 selezionano il modo operativo del Mini Modulo GMM 935. In particolare sono disponibili 2 modi operativi corrispondenti alle seguenti configurazioni:

<table>
<thead>
<tr>
<th>DSW1.7</th>
<th>DSW1.8</th>
<th>Modo operativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Modalità RUN</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Modalità DEBUG</td>
</tr>
</tbody>
</table>

In modalità RUN a seguito di un'accensione parte sempre il programma applicativo salvato in FLASH indipendentemente dalle condizioni esterne, mentre in modalità DEBUG l'accensione é comandata dal segnale POW di CN1 così come l'esecuzione del Boot Loader del microcontrollore comandata dal segnale BOOT.

Entrambi questi segnali vengono gestiti dai corrispondenti segnali DTR ed RTS della seriale RS 232 del P.C. di sviluppo fornendo a quest'ultimo la possibilità di attivare il Boot Loader interno od il programma applicativo in FLASH tramite una semplice gestione software.

Programmi per P.C. come il FLASH MAGIC (per la gestione ISP della FLASH EPROM) ed HYPERTERMINAL (per l'emulazione terminale di console) sono quindi in grado di eseguire questi settaggi e coincidono con gli unici ausili di sviluppo necessari. La programmazione ISP (In System Programming) riduce i costi ed i tempi di sviluppo dell'applicazione, infatti elimina la necessità di usare EPROM esterne, programmatore, cancellatori, ecc.

Per ulteriori informazioni sulla programmazione ISP si prega di consultare la specifica documentazione tecnica rilasciata dalla PHILIPS e dalla ESACCADEMY.

A/D CONVERTERS

Il Mini Modulo GMM 935 è dotato due A/D converter da 4 canali multiplexati, per un totale di otto canali, ognuno dei quali ha risoluzione di 8 bit, pertanto ogni A/D converter ha quattro registri dati per memorizzare le conversioni.

Ogni A/D converter effettua la misura dell'ingresso selezionato portandolo ad un comparatore e confrontandolo con il segnale generato da un DAC interno.

Un registro ad approssimazioni successive (SAR) pilota il DAC e varia il segnale di confronto in retroazione con la risposta del comparatore (tecnica delle approssimazioni successive).

Ogni A/D converter ha quattro registri per il risultato delle conversioni, su ogni canale è possibile impostare un valore limite.

Quando il valore misurato supera il limite, un interrupt viene generato, se abilitato.

Inoltre, è possibile usare il DAC pilotato dal registro ad approssimazioni successive per generare un segnale analogico ad alta impedenza come uscita su un pin prefissato.

Esistono diverse modalità operative per l'utilizzo degli A/D converter, ad esempio è possibile effettuare la conversione continua su di un singolo canale e memorizzare quattro conversioni consecutive nei quattro registri di dati; una volta completata la quarta conversione può essere attivato un interrupt.

Oppure è possibile sincronizzare i due A/D converters per effettuare due conversioni in parallelo reale.

Per ulteriori informazioni, consultare la documentazione tecnica del microcontrollore e nelle sue note applicative, disponibili direttamente nel sito PHILIPS.
INGRESSI ANALOGICI

Una delle caratteristiche più importanti del modulo **GMM 935** è la presenza di due comparatori analogici di precisione che, grazie alla loro flessibilità ed alla semplice gestione software, consentono di affrontare numerose applicazioni in cui si devono appunto gestire grandezze analogiche. I 2 canali a fianco della classica funzionalità di comparazione (tra segnali esterni e/o tensione di riferimento interna) offrono anche interessanti funzionalità di A/D converter. In dettaglio sfruttando tutte le potenzialità si possono ottenere facilmente fino a 4 convertitori analogico digitali con tecnica di conversione Sigma Delta oppure Doppia Rampa, dotati di una precisione di 12 bit. La documentazione completa dell'implementazione hardware e software dei canali A/D descritti è riportata nella documentazione tecnica del microcontrollore e nelle sue note applicative, disponibili direttamente nel sito PHILIPS.

SELEZIONE COMUNICAZIONE SERIALE

La linea di comunicazione seriale della scheda **GMM 935** può essere bufferata in RS 232 o TTL. Dal punto di vista software sulla linea può essere definito il protocollo fisico di comunicazione tramite la programmazione di alcuni registri interni del microprocessore. La selezione del protocollo elettrico avviene via hardware e richiede un'opportuna configurazione del dip switch di bordo, come descritto nelle precedenti tabelle; l'utente può autonomamente passare da una configurazione all'altra seguendo le informazioni riportate di seguito:

- **LINEA SERIALE SETTATA IN RS 232** (configurazione default)

 DSW1.1 = ON
 DSW1.2 = ON
 DSW1.3 = ON
 DSW1.4 = OFF
 DSW1.5 = OFF

- **LINEA SERIALE SETTATA IN TTL**

 DSW1.1 = OFF
 DSW1.2 = OFF
 DSW1.3 = OFF
 DSW1.4 = ON
 DSW1.5 = ON

Le figure 32 e 33 illustrano come collegare un generico sistema esterno alla linea seriale della **GMM 935**. Si ricorda che il collegamento seriale del P.C. di sviluppo richiede due segnali aggiuntivi, come descritto in figura 17. I segnali aggiuntivi, chiamati nella figura POW e BOOT, servono ad attivare il programma di BOOT LOADER già incorporato nel microcontrollore, la cui funzione è la gestione delle memorie interne dello stesso allo scopo di modificare e testare il programma utente. Una volta scritto il programma definitivo nella FLASH del micro, i segnali POW e BOOT non vanno più collegati.
DESCRIZIONE SOFTWARE

Questa scheda ha la possibilità di usufruire di una ricca serie di strutture software che consentono di utilizzarne al meglio le caratteristiche. In generale il Mini Modulo può sfruttare tutte le risorse software per il microprocessore montato e tutti i pacchetti ideati per la famiglia 51, sia ad alto che a basso livello. Tutti i pacchetti di sviluppo software forniti dalla grifo® sono sempre accompagnati da esempi che illustrano come gestire le sezioni della scheda e da una completa documentazione.

GWT51: Completo programma di comunicazione e gestione delle Memorie di Massa per le schede della famiglia 51. Effettua una emulazione terminale compatibile con ADD Viewpoint. Gira su Windows 9x/ME, NT, 2000, XP.

GET51: Completo programma di EDITOR, Comunicazione e gestione delle Memorie di Massa per le schede della famiglia 51. Una serie di comodi menù a tendina facilita l’uso del programma, il quale può funzionare anche in abbinamento ad un mouse. Il programma, oltre che in ambiente MS-DOS, gira anche su macchine MACINTOSH in abbinamento al programma VIRTUAL-PC.

BASCOM 8051: Cross compilatore a basso costo per files sorgenti scritti in BASIC, disponibile in ambiente WINDOWS con un comodo IDE che mette a disposizione un editor, il compilatore ed un simulatore molto potente per il debugger del sorgente. Comprende molti modelli di memoria, svariati tipi di dati ed istruzioni dedicate alle risorse hardware.

HI TECH C 51: Cross compilatore per file sorgenti scritti in C. E’ un potente pacchetto software che tramite un comodo I.D.E. permette di utilizzare un editor, un compilatore C (floating point), un assemblatore, un ottimizzatore, un linker e un remote debugger. Sono inclusi i source delle librerie.

SYS51CW: Cross compilatore per programmi scritti in C, disponibile in ambiente WINDOWS con un comodo IDE che mette a disposizione: editor, compilatore C, assemblatore, ottimizzatore, linker, librerie ed un debugger simbolico remoto.

SYS51PW: Cross compilatore per programmi scritti in PASCAL, disponibile in ambiente WINDOWS con un comodo IDE che mette a disposizione: editor, compilatore PASCAL, assemblatore, ottimizzatore, linker, librerie ed un debugger simbolico remoto.

DDS MICRO C 51: E’ un comodo pacchetto software, a basso costo, che tramite un completo I.D.E. permette di utilizzare un editor, un compilatore C (integer), un assemblatore, un linker e un remote debugger abbinato ad un monitor. Sono inclusi i sorgenti delle librerie ed una serie di utility.

µC/51: E’ un comodo pacchetto software, a basso costo, che tramite un completo I.D.E. permette di utilizzare un editor, un compilatore ANSI C, un assemblatore, un linker e un remote debugger configurabile da utente a livello sorgente. Sono inclusi i sorgenti delle librerie fondamentali e del remote debugger, alcuni esempi di utilizzo e vari programmi di utility.
FIGURA 32: ESEMPIO COLLEGAMENTO SERIALE RS 232

FIGURA 33: ESEMPIO COLLEGAMENTO SERIALE TTL
LADDER WORK: E' un semplice sistema per creare programmi di automazione con la conosciuta e diffusa logica a contatti. Include un editor grafico che consente di posizionare e collegare i componenti hardware della scheda (input, output, contatori, A/D, ecc) come su uno schema elettrico e di definire le proprietà, un efficiente compilatore che converte lo schema in codice eseguibile ed utility per il download di tale codice verso la scheda. Il tutto integrato in un comodo IDE per Windows. Viene fornito come CD, che comprende esempi e manuale d'uso, e chiave di abilitazione.

Figura 34: Foto GMM 935 vista dall'alto
FIGURA 35: FOTO GMM 935.11MHz VISTA DALL'ALTO
DESCRIZIONE SOFTWARE DELLE PERIFERICHE DI BORDO

Di seguito viene riportata una descrizione dettagliata della gestione software delle periferiche di bordo. Qualora la documentazione riportata fosse insufficiente fare riferimento direttamente alla documentazione tecnica della casa costruttrice del componente. In questo paragrafo inoltre non vengono descritte le sezioni che fanno parte del microprocessore: per quanto riguarda la programmazione di quest’ultime si faccia riferimento all’appendice A di questo manuale. Nei paragrafi successivi si usano le indicazioni D0÷D7 e .0÷.7 per fare riferimento ai bits della combinazione utilizzata nelle operazioni di I/O.

LED DI ATTIVITA'

La GMM 935 consente la gestione software del LED di attività o stato DL1, tramite una linea di I/O del microprocessore con la seguente corrispondenza:

\[
\begin{align*}
P0.6 = 0 & \rightarrow \text{DL1 sattivo} \\
P0.6 = 1 & \rightarrow \text{DL1 disattivo}
\end{align*}
\]

Si ricorda che la linea P0.6 é disponibile su CN1 quindi indirettamente visualizza sempre lo stato di questo segnale sia quando é configurato in uscita (stato del LED e della linea stabiliti dal software) che in ingresso (stato della linea e del LED acquisiti dal software). La linea P0.6 é mantenuta alta in fase di reset o power on, di conseguenza in seguito ad una di queste fasi il LED é disattivo.

PERIFERICHE DELLA CPU

La descrizione dei registri e del relativo significato di tutte le periferiche interne del microprocessore (COMPARATORI, A/D CONVERTERS, TMR CNT, ICU, UART, I2C BUS, SPI, CCU, ecc) é disponibile nell'apposito manuale tecnico e manuale d'uso della casa costruttrice. Fare riferimento alla BIBLIOGRAFIA ed all'appendice A di questo manuale per una più facile individuazione di questa documentazione.
SCHEDE ESTERNE

Il Mini Modulo GMM 935 si interfaccia direttamente a buona parte delle schede di supporto dotate di un connettore a 28 o 40 pin, come quelli della serie Mini BLOCK e di interfaccia operatore. Le risorse di bordo possono essere facilmente aumentate collegando le numerose schede periferiche del carteggio grifo® o tramite i sistemi di altre ditte.

A titolo di esempio ne riportiamo un elenco con una breve descrizione delle caratteristiche di massima; per maggiori informazioni richiedere o cercare l’apposita documentazione tecnica, sul CD o sul sito grifo®.

GMB HR84

grifo® Mini Block Housing, 8 opto inputs, 4 relays outputs

GMB HR168

grifo® Mini Block Housing, 16 opto inputs, 8 relays outputs
Contenitore modulare per guide DIN 50022 Modulbox modello M6 HC53 per su barra DIN ad Omega; frontale 90x106 mm; altezza 58 mm; 16 Ingressi Optoisolati indifferentemente NPN o PNP visualizzati da LEDs (alcuni ingressi possono svolgere funzioni di conteggio); 8 Uscite a Relay da 5 A visualizzate da 8 LEDs; Real Time Clock con batteria al Litio; 1 Uscita TTL pilotata da RTC e visualizzata da un LED

GMM TST 2

grifo® Mini Modulo Test 2
Scheda, a basso costo per la valutazione e la sperimentazione dei Mini Moduli grifo® da 28 e da 40 pin tipo GMM 935, GMM AM08, GMM AM32, ecc.; completa di connettori a vaschetta D9 per la connessione alla seriale in RS 232; interfacce standard per la programmazione ISP; connettore 10 vie per la connessione al AVR ISP; tastiera a matrice da 16 tasti; display LCD retroilluminato, da 20 caratteri per 2 righe; Buzzer; connettori e sezione alimentatrice; 2 pulsanti e e 2 LED per la gestione di I/O digitali. Linee di I/O dei Mini Moduli riportate su due connettori con pin out normalizzato I/O ABACO®.

QTP G28

Quick Terminal Panel 28 tasti con LCD grafico
Interfaccia operatore provvista di display grafico da 240x128 pixel retroilluminato con lampada a catodo freddo; tastiera a membrana da 28 tasti di cui 5 configurabili dall'utente; 16 LEDs di stato; alimentatore a bordo scheda; interdaccia seriale in RS 232, RS 422-485 o current loop galvanicamente isolata; linea seriale ausiliaria in RS 232; interfaccia CAN. Tasti ed etichette personalizzabili dall'utente tramite serigrafie da inserire in apposite tasche; contenitore metallico e plastico; EEPROM di set up; 256K EPROM o FLASH; Real Time Clock; 128K RAM; buzzer. Firmware di gestione che svolge funzione di terminale con primitive grafiche.
QTP 22
Quick Terminal Panel, 22 LEDs, 22 tasti + Lettore di Badge
Pannello operatore intelligente equipaggiato con display, Fluorescente o LCD, retoilluminazione a LEDs, 40x2 o 40x4 caratteri; linea seriale bufferabile in RS 232, RS 422, RS 485 o Current Loop; E2 seriale per memorizzare parametri e messaggi. Possibilità di rinominare i tasti, i LEDs e il pannello inserendo delle etichette pre fornite negli appositi slots; 22 tasti e 22 LEDs con lampeggiamento e buzzer gestibile via software; alimentatore incorporato; RTC opzionale, lettore di badge magnetici e uscite a relé opzionali.

QTP 24
Quick Terminal Panel, 16 LEDs, 24 tasti + Lettore di Badge
Pannello operatore intelligente equipaggiato con display, Fluorescente o LCD, retoilluminazione a LEDs, 20x2 o 20x4 caratteri; linea seriale bufferabile in RS 232, RS 422, RS 485 o Current Loop; E2 seriale per memorizzare parametri e messaggi. Possibilità di rinominare i tasti, i LEDs e il pannello inserendo delle etichette pre fornite negli appositi slots; 24 tasti e 16 LEDs con lampeggiamento e buzzer gestibile via software; alimentatore incorporato; RTC opzionale, lettore di badge magnetici e uscite a relé opzionali.

QTP 16
Quick Terminal Panel, 16 tasti + 4 opto input
Pannello operatore intelligente equipaggiato con display, Fluorescente o LCD, retoilluminazione a LEDs, 20x2 o 20x4 caratteri; linea seriale bufferabile in RS 232, RS 422, RS 485 o Current Loop; E2 seriale per memorizzare parametri e messaggi; buzzer gestibile via software; 4 ingressi optoisolati leggibili dalla seriale.

QTP 12
Quick Terminal Panel, 1 LED, 12 tasti + CAN
Interfaccia operatore provvista di display alfanumerico, da 20x2 caratteri sia LCD che Fluorescente; display LCD retroilluminato a LED; display Fluorescente Grafico da 140x16 pixel; interfaccia per tastiera da 12 tasti; interfaccia seriale in RS 232, RS 422, RS 485 o Current Loop; interfaccia CAN; EEPROM di setup; buzzer. Firmware di gestione che svolge funzione di terminale con primitive di rappresentazione.

QTP 4x6
Quick Terminal Panel, fino a 24 tasti
Interfaccia operatore provvista di display alfanumerico, da 20x2, 20x4, 20x4 BIG, 40x1 e 40x2 caratteri sia LCD che Fluorescente; display LCD retroilluminato a LED; interfaccia per tastiera esterna da 24 tasti; interfaccia seriale in RS 232, RS 422, RS 485 o Current Loop; EEPROM di setup; buzzer. Firmware di gestione che svolge funzione di terminale con primitive di rappresentazione.

QTP 03
Quick Terminal Panel, fino a 3 tasti
Interfaccia operatore provvista di display alfanumerico, da 20x2, 20x4, 20x4 BIG, 40x1 e 40x2 caratteri sia LCD che Fluorescente; display LCD retroilluminato a LED; interfaccia per tastiera esterna a tre tasti; interfaccia seriale in RS 232 o TTL; EEPROM di setup; buzzer. Firmware di gestione che svolge funzione di terminale con primitive di rappresentazione.

MSI 01
Multi Serial Interface 1 linea
Interfaccia per linea seriale TTL e linea bufferata in RS 232, RS 422, RS 485 o Current Loop. La linea seriale TTL è disponibile su di un connettore a morsettiera mentre quella bufferata è disponibile su di un connettore plug standard RJ12 da 6 vie.
FIGURA 36: SCHEMA DELLE POSSIBILI CONNESSIONI
BIBLIOGRAFIA

E’ riportato di seguito, un elenco di manuali e note tecniche, a cui l’utente può fare riferimento per avere maggiori chiarimenti, sui vari componenti montati a bordo del Mini Modulo GMM 935.

Documentazione tecnica MAXIM: *True RS 232 Transceivers*

Manuale NATIONAL: *Low-Dropout Linear Regulator*

Documentazione tecnica PHILIPS: *P89LPC935 Product Data*
Documentazione tecnica PHILIPS: *P89LPC935 User Manual*
Manuale PHILIPS: *Application notes and development tools for 80C51 microcontrollers*
Manuale PHILIPS: *80C51 - Based 8-Bit Microcontrollers*
Manuale PHILIPS: *I2C-bus compatible ICs*

Manuale SGS-THOMSON: *Small signal transistor - Data Book*

Manuale TEXAS INSTRUMENTS: *The TTL Data Book - SN54/74 Families*

Per reperire questi manuali fare riferimento alle case produttrici ed ai relativi distributori locali. In alternativa si possono ricercare le medesime informazioni o gli eventuali aggiornamenti ai siti internet delle case elencate.
APPENDICE A: DESCRIZIONE COMPONENTI DI BORDO

La grifo® fornisce un servizio di documentazione tecnica totalmente gratuito attraverso il proprio sito internet in cui possono essere scaricati i data sheets completi dei componenti usati a bordo scheda. Si rimanda quindi l'utente a tali documenti, di cui viene riportato il percorso sia tramite i link che tramite l'URL completo, assieme alle prime pagine degli stessi documenti.

P89LPC935

Link: Home | Servizio Documentazione Tecnica | PHILIPS | Data-Sheet P89LPC935
URL: http://www.grifo.it/PRESS/DOC/Philips/P89LPC935.pdf

P89LPC933/934/935

8-bit microcontroller with accelerated two-clock 80C51 core
4 kB/8 kB 3 V byte-erasable Flash with 8-bit A/D converters
Rev. 04 — 09 February 2004 Objective data

1. General description

The P89LPC933/934/935 is a single-chip microcontroller, available in low cost packages, based on a high performance processor architecture that executes instructions in two to four clocks, six times the rate of standard 80C51 devices. Many system-level functions have been incorporated into the P89LPC933/934/935 in order to reduce component count, board space, and system cost.

2. Features

2.1 Principal features

- 4 kB/8 kB byte-erasable Flash code memory organized into 1 kB sectors and 64-byte pages. Single-byte erasing allows any byte(s) to be used as non-volatile data storage.
- 256-byte RAM data memory. (P89LPC935 also includes a 512-byte auxiliary on-chip RAM).
- 512-byte customer Data EEPROM on chip allows serialization of devices, storage of set-up parameters, etc. (P89LPC935)
- Dual 4-input multiplexed 8-bit A/D converters (P89LPC935, single A/D on P89LPC934/933). Two analog comparators with selectable inputs and reference source.
- Two 16-bit counter/timers (each may be configured to toggle a port output upon timer overflow or to become a PWM output) and a 23-bit system timer that can also be used as a Real-Time clock.
- Enhanced UART with fractional baudrate generator, break detect, framing error detection, and automatic address detection; 400 kHz byte-wide I2C-bus communication port and SPI communication port.
- Capture/Compare Unit (CCU) provides PWM, input capture, and output compare functions (P89LPC935).
- High-accuracy internal RC oscillator option allows operation without external oscillator components. The RC oscillator option is selectable and fine tunable.
- 2.4 V to 3.6 V VDD operating range. I/O pins are 5 V tolerant (may be pulled up or driven to 5.5 V).
- 28-pin TSSOP, PLCC, and HVQFN packages with 23 I/O pins minimum and up to 26 I/O pins while using on-chip oscillator and reset options.
2.2 Additional features

- A high performance 80C51 CPU provides instruction cycle times of 167-333 ns for all instructions except multiply and divide when executing at 12 MHz. This is 6 times the performance of the standard 80C51 running at the same clock frequency. A lower clock frequency for the same performance results in power savings and reduced EMI.

- Serial Flash In-Circuit Programming (ICP) allows simple production coding with commercial EPROM programmers. Flash security bits prevent reading of sensitive application programs.

- Serial Flash In-System Programming (ISP) allows coding while the device is mounted in the end application.

- In-Application Programming of the Flash code memory. This allows changing the code in a running application.

- Watchdog timer with separate on-chip oscillator, requiring no external components. The watchdog prescaler is selectable from 8 values.

- Low voltage reset (Brownout detect) allows a graceful system shutdown when power fails. May optionally be configured as an interrupt.

- Idle and two different Power-down reduced power modes. Improved wake-up from Power-down mode (a LOW interrupt input starts execution). Typical Power-down current is 1 \(\mu \)A (total Power-down with analog functions disabled).

- Active-LOW reset. On-chip power-on reset allows operation without external reset components. A reset counter and reset glitch suppression circuitry prevent spurious and incomplete resets. A software reset function is also available.

- Configurable on-chip oscillator with frequency range options selected by user programmed Flash configuration bits. Oscillator options support frequencies from 20 kHz to the maximum operating frequency of 12 MHz.

- Oscillator Fail Detect. The Watchdog timer has a separate fully on-chip oscillator allowing it to perform an oscillator fail detect function.

- Programmable port output configuration options: quasi-bidirectional, open drain, push-pull, input-only.

- Port ‘input pattern match’ detect. Port 0 may generate an interrupt when the value of the pins match or do not match a programmable pattern.

- LED drive capability (20 mA) on all port pins. A maximum limit is specified for the entire chip.

- Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns minimum ramp times.

- Only power and ground connections are required to operate the P89LPC933/934/935 when internal reset and RC oscillator options are selected.

- Four interrupt priority levels.

- Eight keypad interrupt inputs, plus two additional external interrupt inputs.

- Schmitt trigger port inputs.

- Second data pointer.

- Emulation support.
APPENDICE B: SCHEMA ELETTRICO GMM TST 2

In questa appendice sono disponibili gli schemi elettrici della scheda di supporto GMM TST 2 che illustra alcune modalità di connessione dei segnali dei Mini Moduli. Informazioni più dettagliate su questa scheda sono disponibili nel relativo manuale tecnico e l’utente le può usare liberamente ad esempio per realizzare una propria scheda che usa la GMM 935 come macro componente.

FIGURA B-1: SCHEMA ELETTRICO GMM TST 2 (1 DI 3)
FIGURA B-2: SCHEMA ELETTRICO GMM TST 2 (2 di 3)
Figura B-3: Schema elettrico GMM TST 2 (3 di 3)
APPENDICE C: INDICE ANALITICO

SIMBOLI

.11MHZ 6, 12
µC/51 32, 38

A

A/D CONVERTER 10, 12, 15, 16, 36
RISOLUZIONE A/D CONVERTER 12
TEMPO DI CONVERSIONE A/D 12
ALIMENTAZIONE 8, 13, 15, 20
SEZIONE ALIMENTATRICE COLLEGATA 20
SEZIONE ALIMENTATRICE NON COLLEGATA 20

B

BASCOM 8051 31, 38

C

CCU 12
CLOCK 6, 12
COME INIZIARE 26
COMPARATORE ANALOGICO 15, 37
CONNETTORI 12

D

DEBUG 36
DIMENSIONI 12
DIP SWITCH 10, 12, 18, 36, 37

E

EEPROM 12

F

FLASH EPROM 12

G

GMB HR84 21
GMM TST 2 24
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I/O DIGITALE</td>
<td>6, 12, 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC BUS</td>
<td>12, 15, 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERRUPT</td>
<td>12, 15, 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRAM</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>KBI</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>LADDER WORK</td>
<td>34, 39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED</td>
<td>12, 14, 42</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>MEMORIA</td>
<td>8, 12</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>P89LPC935</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PESO</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER ON</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWM</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>RAM</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REAL TIME CLOCK</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS 232</td>
<td>15, 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RUN</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>SELEZIONE COMUNICAZIONE SERIALE</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SERIALE</td>
<td>6, 12, 15, 37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPI</td>
<td>12, 15, 16</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>TEMPERATURA</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIMER COUNTER</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TTL</td>
<td>15, 16</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>UMIDITÀ</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
W
WATCH DOG 12

X
XRAM 12