Zoccolo maschio 40 piedini dual in line a passo 100 mils, largo 600 mils; ridottissimo ingombro: 21 x 54 x 13 mm; circuito stampato a 4 strati per ottimizzare le immunità' e le caratteristiche EMI; unica alimentazione a +5Vdc 48 mA; disponibilità' di modalità operate a Basso Consumo; microcontrollore Atmel89C51CC03 (codice compatibile 8051) con quarzo da 14,74 Mhz; ciclo macchina programmabile a 12 o 6 periodi di clock; 64K FLASH per codice, 2K FLASH per Boot Loader, 256 bytes IRAM per dati, 2K bytes ERAM per dati, 2K EEPROM per dati. Segnali di espansione per memorie e dispositivi esterni: fino a 64K in area dati. 8 canali di A/D converter con 10 bit di risoluzione, 20 µsec per ogni conversione; 19 sorgenti di Interrupt con 4 livelli di priorità'; 3 Timer Counter a 16 bits; 5 canali PCA a 16 bit con funzionalità di PWM, comparazione, ecc.; 34 linee di I/O digitale collegate al connettore; alcune di queste linee hanno funzionalità multiple. Linea seriale hardware con Baud Rate programmabile fino a 115200 Baud, bufferata in TTL o in RS 232 con protezione contro scariche da ±15 KV. Circuiteria di Reset e controllo alimentazione. Linea 12C BUS software, riportata sul connettore; controllore CAN compatibile con standard 2.0A e 2.0B. Dip switch di configurazione ad 8 vie, di cui 3 acquisibili via software; 2 LED di segnalazione gestiti via software tramite I/O digitali.

Gestione della FLASH ed EEPROM interna in modalità' In System Programming, ovvero con modulo già montato, sfruttando la linea di comunicazione seriale. Software gratuito per PC di supporto alla programmazione ISP. Vasta disponibilità di software di sviluppo: compilatori C (µC/51, HTC51, SYS51CW, DDS Micro C51); compilatori BASIC (BASCOM 8051); compilatori PASCAL (SYS51PW); logica a Contatti (LADDER WORK), ecc.. Ricca serie di programmi dimostrativi ed esempi di utilizzo forniti sotto forma di sorgenti ampiamente commentati ed eseguibili, per i vari ambienti di sviluppo.
Vincoli sulla documentazione grifo® Tutti i Diritti Riservati

Nessuna parte del presente manuale può essere riprodotta, trasmessata, trascritta, memorizzata in un archivio o tradotta in altre lingue, con qualunque forma o mezzo, sia esso elettronico, meccanico, magnetico ottico, chimico, manuale, senza il permesso scritto della grifo®.

IMPORTANTE

Tutte le informazioni contenute sul presente manuale sono state accuratamente verificate, ciononostante grifo® non si assume nessuna responsabilità per danni, diretti o indiretti, a cose e/o persone derivanti da errori, omissioni o dall’uso del presente manuale, del software o dell’hardware ad esso associato. grifo® altresì si riserva il diritto di modificare il contenuto e la veste di questo manuale senza alcun preavviso, con l’intento di offrire un prodotto sempre migliore, senza che questo rappresenti un obbligo per grifo®. Per le informazioni specifiche dei componenti utilizzati sui nostri prodotti, l’utente deve fare riferimento agli specifici Data Book delle case costruttrici o delle seconde sorgenti.

LEGENDA SIMBOLI

Nel presente manuale possono comparire i seguenti simboli:

- Attenzione: Pericolo generico
- Attenzione: Pericolo di alta tensione
- Attenzione: Dispositivo sensibile alle cariche elettrostatiche

MARCHI REGISTRATI

INDICE GENERALE

INTRODUZIONE 1

VERSIONE SCHEDA .. 3
NOTA SUL NOME MODULO .. 3

INFORMAZIONI GENERALI .. 4
COMUNICAZIONE SERIALE .. 5
LINEE DI I/O DIGITALE TTL .. 6
LINEA I2C BUS .. 6
LINEE ANALOGICHE DI A/D CONVERTER ... 6
MEMORIE .. 8
WATCH DOG .. 8
CLOCK .. 8
CONFIGURAZIONE SCHEDA .. 9
BUS DI ESPANSIONE .. 9
CONTROLLORE CAN .. 10
SETTORI DI UTILIZZO ... 10

CARATTERISTICHE TECNICHE ... 12
CARATTERISTICHE GENERALI ... 12
CARATTERISTICHE FISICHE ... 12
CARATTERISTICHE ELETTRICHE ... 13

INSTALLAZIONE ... 14
SEGNALAZIONI VISIVE ... 14
ALIMENTAZIONE .. 14
CONNESSIONI ... 15
 CN1 - CONNETTORE CON SEGNALI DEL MINI MODULO ... 16
RESET, CONTROLLO ALIMENTAZIONE, WATCH DOG .. 17
DIP SWITCH .. 18
INTERRUTS ... 19
INTERFACCIAMENTO CON IL CAMPO ... 20
SELEZIONE COMUNICAZIONE SERIALE ... 20
SELEZIONE MODO OPERATIVO .. 22
ESPANSIONI ESTERNE ... 22
INTERFACCIA CAN ... 23

SCHEDE DI SUPPORTO ... 24
UTILIZZO CON MODULO GMB HR168 ... 24
UTILIZZO CON SCHEDA GMM TST E GMM TST 2 ... 26

COME INIZIARE ... 28
A) PREDISPOSIZIONE COLLEGAMENTI .. 28
B) PROVA PROGRAMMA DEMO SALVATO NEL MINI MODULO 29
C) RIPROGRAMMAZIONE DELLA FLASH CON PROGRAMMA DEMO 29
D) CREAZIONE DEL CODICE ESEGUIBILE DEL PROGRAMMA DEMO 33
D3A) RICOMPILAZIONE CON BASCOM 8051 ... 33
D3B) RICOMPILAZIONE CON µC/51 ... 35
D3C) RICOMPILAZIONE CON LADDER WORK .. 38
E) PREPARAZIONE DEFINITIVA DELL’APPLICAZIONE .. 40

AMBIENTI DI SVILUPPO ... 42

DESCRIZIONE SOFTWARE PERIFERICHE DI BORDO ... 43
INGRESSI DI CONFIGURAZIONE ... 43
LEDS DI SEGNALAZIONE ... 43
SEGNALI MULTIFUNZIONE ... 44
ACCESSO ALLE MEMORIE ... 44

BIBLIOGRAFIA ... 45

APPENDICE A: DESCRIZIONE COMPONENTI DI BORDO A-1
AT89C51CC03 ... A-1

APPENDICE B: SCHEMA ELETTRICO GMM TST 2 ... B-1

APPENDICE C: CONFIG. BASE, OPZIONI, ACCESSORI ... C-1

APPENDICE D: INDICE ANALITICO .. D-1
INDICE DELLE FIGURE

FIGURA 1: POSIZIONE DELLA VERSIONE SCHEMA .. 3
FIGURA 2: SCHEMA A BLOCCHI .. 7
FIGURA 3: VISTA COMPLESSIVA ... 9
FIGURA 4: PIANTA COMPONENTI (LATO SUPERIORE) ... 11
FIGURA 5: PIANTA COMPONENTI (LATO INFERIORE) .. 11
FIGURA 6: VISTA DALL’ALTO .. 13
FIGURA 7: TABELLA DELLE SEGNALAZIONI VISIVE ... 14
FIGURA 8: DISPOSIZIONE LEDs, CONNETTORI, DIP SWITCH 15
FIGURA 9: CN1 - ZOCCOLO CON SEGNALI DEL MINI MODULO 16
FIGURA 10: TABELLA UTILIZZO DIP SWITCH (1 DI 2) .. 18
FIGURA 11: TABELLA UTILIZZO DIP SWITCH (2 DI 2) .. 19
FIGURA 12: ESEMPIO COLLEGAMENTO SERIALE TTL .. 21
FIGURA 13: ESEMPIO COLLEGAMENTO SERIALE RS 232 ... 21
FIGURA 14: BUS ESPANSIONE PER AREA DATI ... 23
FIGURA 15: ACCOPPIATA GMB HR168 + GMM ACB Zero .. 25
FIGURA 16: ACCOPPIATA GMM TST + GMM ACB Zero ... 27
FIGURA 17: COLLEGAMENTO SERIALE RS 232 TRA GMM ACB Zero e PC 28
FIGURA 18: TABELLA ESEMPI .. 30
FIGURA 19: FINESTRA SETTAGGIO FLIP (1 DI 3) ... 31
FIGURA 20: FINESTRA SETTAGGIO FLIP (2 DI 3) ... 31
FIGURA 21: FINESTRA SETTAGGIO FLIP (3 DI 3) ... 32
FIGURA 22: CARICAMENTO SORGENTE CON BASCOM 8051 34
FIGURA 23: CONFIGURAZIONE COMPILATORE BASCOM 8051 34
FIGURA 24: COMPILAZIONE CON BASCOM 8051 .. 35
FIGURA 25: CARICAMENTO AMBIENTE CON \µC/51 E JFE .. 36
FIGURA 26: COMPILAZIONE CON \µC/51 E JFE .. 36
FIGURA 27: CARICAMENTO SORGENTE CON \µC/51 ED uEDIT 37
FIGURA 28: CARICAMENTO PROGETTO CON \µC/51 ED UmShell 37
FIGURA 29: COMPILAZIONE CON \µC/51 ED UmShell ... 38
FIGURA 30: CARICAMENTO SCHEMATICO CON LADDER WORK 38
FIGURA 31: CONFIGURAZIONE COMPILATORE CON LADDER WORK 39
FIGURA 32: COMPILAZIONE CON LADDER WORK .. 39
FIGURA 33: RISULTATO COMPILAZIONE CON LADDER WORK 39
FIGURA 34: ESEMPI DI CONNESSIONE ... 41
FIGURA C1: TABELLA CONFIGURAZIONE BASE .. C-1
INTRODUZIONE

L’uso di questi dispositivi è rivolto - IN VIA ESCLUSIVA - a personale specializzato.

Questo prodotto non è un componente di sicurezza così come definito dalla direttiva 98-37/CE.

I pin della scheda non sono dotati di protezione contro le cariche elettrostatiche. Visto che esiste un collegamento diretto tra numerosi pin della scheda ed i rispettivi pin dei componenti di bordo e che quest’ultimi sono sensibili ai fenomeni ESD, il personale che maneggia la scheda è invitato a prendere tutte le precauzioni necessarie per evitare i possibili danni che potrebbero derivare dalle cariche elettrostatiche.

Scopo di questo manuale é la trasmissione delle informazioni necessarie all’uso competente e sicuro dei prodotti. Esse sono il frutto di un’elaborazione continua e sistematica di dati e prove tecniche registrate e validate dal Costruttore, in attuazione alle procedure interne di sicurezza e qualità dell'informazione.

I dati di seguito riportati sono destinati - IN VIA ESCLUSIVA - ad un utenza specializzata, in grado di interagire con i prodotti in condizioni di sicurezza per le persone, per la macchina e per l’ambiente, interpretando un’elementare diagnostica dei guasti e delle condizioni di funzionamento anomale e compiendo semplici operazioni di verifica funzionale, nel pieno rispetto delle norme di sicurezza e salute vigenti.

I dispositivi non possono essere utilizzati all'aperto. Si deve sempre provvedere ad inserire i moduli all’interno di un contenitore a norme di sicurezza che rispetti le vigenti normative. La protezione di questo contenitore non si deve limitare ai soli agenti atmosferici, bensì anche a quelli meccanici, elettrici, magnetici, ecc.
Per un corretto rapporto coi prodotti, è necessario garantire leggibilità e conservazione del manuale, anche per futuri riferimenti. In caso di deterioramento o più semplicemente per ragioni di approfondimento tecnico ed operativo, consultare direttamente l’Assistenza Tecnica autorizzata.

Al fine di non incontrare problemi nell’uso di tali dispositivi, è conveniente che l’utente - PRIMA DI COMINCIARE AD OPERARE - legga con attenzione tutte le informazioni contenute in questo manuale. In una seconda fase, per rintracciare più facilmente le informazioni necessarie, si può fare riferimento all’indice generale e all’indice analitico, posti rispettivamente all’inizio ed alla fine del manuale.
Il presente manuale è riferito alla scheda GMM ACB Zero con versione stampato 140207 e successive. La validità delle informazioni riportate è quindi subordinata al numero di versione della scheda in uso e l’utente deve quindi sempre verificare la giusta corrispondenza. Sulla scheda il numero di versione è riportato in più punti sia a livello di serigrafia che di stampato e la seguente figura illustra la posizione più facilmente accessibile.

Figura 1: Posizione della versione scheda

Si prega di notare che accanto al numero di revisione dello stampato, appena descritto, il nome della scheda è **GMM ACB**. La **GMM ACB Zero** viene infatti realizzata utilizzando lo stampato della **GMM ACB** su cui viene montato il microcontrollore 89C51CC03. Quindi per distinguere una **GMM ACB** da una **GMM ACB Zero** bisogna controllare il componente montato su IC3 e poi usare la seguente corrispondenza:

<table>
<thead>
<tr>
<th>Microcontrollore montato</th>
<th>-> Nome modulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmel 89C51CC03</td>
<td>GMM ACB Zero</td>
</tr>
<tr>
<td>Atmel 89C51AC2</td>
<td>GMM ACB</td>
</tr>
</tbody>
</table>
INFORMAZIONI GENERALI

Il modulo GMM ACB Zero è un Mini Modulo basato sul microcontrollore Atmel 89C51CC03, ovvero un potente e completo sistema dotato di CPU; memorie integrate ed una ricca serie di periferiche rivolte alle tipiche richieste dell'automazione.

Il modulo ha già montati, nella sua ridottissima area, i componenti che servono a valorizzare le principali caratteristiche del microcontrollore ed a renderle utilizzabili tutte le modalità operative; inoltre dispone di ulteriori componenti che facilitano ed ampliano i possibili campi di utilizzo.

GMM ACB Zero può essere usato per numerose applicazioni sia nel settore industriale, domestico, automobilistico e didattico, come illustrato nei seguenti paragrafi.

La facilità di impiego di questo Mini Modulo è determinata anche dalla ricca serie di ambienti di sviluppo software basati su linguaggi sia a basso che alto livello che consentono di poter lavorare al meglio utilizzando unicamente un normale PC. Tra questi tools si ricordano i vari compilatori C, BASIC, PASCAL ed anche un ambiente di programmazione grafica a contatti. Grande attenzione e' stata riservata alla messa a punto dell'applicativo, rendendo disponibili dei prodotti che salvan direttamente il programma utente nella FLASH di bordo, con l'ausilio di un normale PC, e che consentono di provare lo stesso programma direttamente sulla scheda.

La GMM ACB Zero è dotata di un connettore normalizzato, che le consente di essere montata immediatamente su schede di supporto come la GMM TST 2, la GMB HR168 e la GMB HR246 oppure di essere utilizzata su una scheda dell'utente, come macro componente. In entrambi i casi si riduce drasticamente il tempo di sviluppo: l'utente puo' avere il suo prototipo o addirittura il prodotto finito nel giro di una settimana.

Le caratteristiche di massima del modulo GMM ACB Zero sono:

- Zoccolo maschio 40 piedini dual in line a passo 100 mils, largo 600 mils.
- Ridottissimo ingombro: 21 x 54 x 13 mm.
- Circuitato stampato a 4 strati per ottimizzare le immunità e le caratteristiche EMI.
- Unica tensione di alimentazione a +5 Vdc, 48 mA (l’assorbimento varia in base ai collegamenti ed allo stato del modulo).
- Disponibilità di modalità operative a basso consumo come Idle Mode e Power Down Mode.
- Microcontrollore Atmel 89C51CC03 (codice compatibile 8051) con quarzo da 14,74 Mhz.
- Ciclo macchina programmabile a 12 o 6 periodi di clock.
- 64K FLASH per codice, 2K FLASH per boot loader, 256 bytes IRAM per dati, 2K bytes ERAM per dati, 2K EEPROM per dati.
- Segnali di espansione per memorie e dispositivi esterni con accesso per area dati.
- Come espansione esterna si possono collegare fino a 64K di SRAM.
- 8 canali di A/D converter con 10 bit di risoluzione, 20 µsec per ogni conversione.
- Tensione di riferimento della sezione A/D riportata sul connettore.
- 19 sorgenti di interrupt con 4 livelli di priorità.
- 3 Timer Counter a 16 bits.
- 5 canali PCA a 16 bist con funzionalità autonome di PWM, comparazione, cattura su evento, generatore di frequenze, ecc.
- Sistema di Watchdog che conferisce al sistema controllato una sicurezza estrema in tutte le condizioni operative.
- 34 linee di I/O digitale collegate al connettore. Alcune di queste hanno funzionalità multiple.
- Circuiteria di Reset e controllo alimentazione.
- Linea seriale hardware con Baud Rate programmabile fino a 115.200 Baud, bufferata in TTL o in RS 232.
- Driver per linea seriale RS 232 con protezione contro scariche fino a ±15 kV.
- Linea I2C BUS software, riportata sul connettore.
- Controllore CAN compatibile con standard 2.0A e 2.0B, che tramite un adeguato driver esterno, consente il collegamento a tutte le linee basate su questo standard.
- Dip switch di configurazione ad 8 vie di cui 3 acquisibili via software.
- 2 LEDs di segnalazione gestiti via software tramite I/O digitali.
- Possibilità di gestione della FLASH ed EEPROM interna in modalità In System Programming, ovvero con modulo già montato, sfruttando la linea di comunicazione seriale.
- Software gratuito per PC, di supporto alla programmazione ISP, che permette di scaricare il codice generato nella FLASH di bordo.
- Vasta disponibilità di software di sviluppo che consentono di poter utilizzare il modulo tramite un semplice PC. Tra i pacchetti disponibili si possono ricordare: vari Assemblatori (ASM51, A51, SXA51); compilatori C (μC/51, HTC51, SYS51CW); compilatori BASIC (BASCOM 8051); compilatori PASCAL (SYS51PW); linguaggi con logica a contatti (LadderWORK); ecc.
- Ricca serie di programmi dimostrativi ed esempi di utilizzo forniti sotto forma di sorgenti ampiamente commentati ed eseguibili, per i vari ambienti di sviluppo.

Viene di seguito riportata una descrizione dei blocchi funzionali della scheda, con indicate le operazioni effettuate da ciascuna di essi. Per una più facile individuazione di tali blocchi e per una verifica delle loro connessioni, fare riferimento alla figura 2.

COMUNICAZIONE SERIALE

La scheda dispone sempre di una linea seriale hardware in cui il protocollo fisico (baud rate, stop bit, bit per chr, parità) è completamente settabile via software tramite la programmazione dei registri interni al microcontrollore.
La linea seriale è collegata al connettore CN1 a livello TTL o RS 232, grazie alla configurazione di alcuni Dip switch di bordo. Quando la scheda deve essere collegata in una rete, collegata a notevole distanza, o collegata ad altri dispositivi che usano diversi protocolli elettrici, si deve interporre un apposito driver seriale esterno (RS 422, RS 485, Current Loop, ecc.). Sul connettore CN1 oltre alle linee di ricezione e trasmissione sono disponibile anche altre linee di I/O gestibili via software che possono essere usate per definire la direzione della linea in caso di RS 485, per abilitare il driver di trasmissione in caso di RS 422 oppure come handshake hardware in caso di RS 232. Ad esempio può essere utilizzato il modulo MSI 01 che è in grado di convertire la linea seriale TTL in qualsiasi altro standard elettrico in modo comodo ed economico.
Per maggiori informazioni sulla scelta del protocollo elettrico leggere il paragrafo SELEZIONE COMUNICAZIONE SERIALE e contattare direttamente la grifo® se necessario; mentre per dettagli sulla programmazione dei registri con cui impostare il protocollo fisico e gestire la comunicazione fare riferimento alla documentazione del microcontrollore all'APPENDICE A di questo manuale ed ai numerosi esempi forniti.
LINEE DI I/O DIGITALE TTL

Il Mini Modulo GMM ACB Zero mette a disposizione 34 linee di I/O digitale TTL del microcontrollore Atmel 89C51CC03 raggruppate in quattro port da 8 bit (P0, P1, P2, P3) ed un port da 2 bit (P4). Per convenzione tutti i segnali dei Port sono designati con i nomi P0.0÷7, P1.0÷7, P2.0÷7, P3.0÷7 e P4.0÷1.
Tali linee sono collegate direttamente al connettore a 40 vie con una disposizione standard comune a tutti i Mini Moduli grifo® ed hanno quindi la possibilità di essere direttamente collegate a numerose schede d'interfaccia.
Via software è definibile ed acquisibile la funzionalità, la direzionalità e lo stato di queste linee, con possibilità di associarle anche alle periferiche della scheda (Timer, Counter, Interrupt, A/D, PCA, CAN, ecc.), tramite una semplice programmazione di alcuni registri interni del microcontrollore.
Per maggiori informazioni fare riferimento ai paragrafi CONNESSIONI e DESCRIZIONE SOFTWARE PERIFERICHE DI BORDO.

LINEA I2C BUS

Sul connettore della GMM ACB Zero sono disponibili i segnali di un'interfaccia I2C BUS, emulata via software, e gestita da due linee di I/O del microcontrollore.
Grazie a questa interfaccia sincrona possono essere collegati dispositivi dotati dello stesso standard di comunicazione in modo da espandere localmente le potenzialità del modulo.
Una ricca serie di esempi software prevede la gestione delle più comuni e diffuse interfacce I2C BUS come A/D e D/A converter, controllori di display, memorie, sensori di temperatura, ecc.
A tale proposito può essere utile esaminare la K51-AVR di cui è disponibile sia il manuale tecnico con il relativo schema elettrico che una completa raccolta di esempi in vari linguaggi. In aggiunta si ricordano anche alcuni modelli dei pannelli operatore QTP che possono essere comandati lasciando libera l'alternativa linea di comunicazione seriale asincrona.

LINEE ANALOGICHE DI A/D CONVERTER

Il Mini Modulo GMM ACB Zero mette a disposizione 8 linee di ingresso analogiche collegate alla sezione A/D converter del microcontrollore. A queste linee possono essere collegati sensori esterni per diverse grandezze fisiche come temperatura, pressione, velocità, peso, ecc. o qualsiasi sistema che fornisca un segnale in tensione compatibile.
Le caratteristiche principali di questa sezione sono: risoluzione di 10 bit; il range d'ingresso massimo 0÷3 V; tempo di conversione tipico su singolo canale di 20 µsec; semplicissima gestione software; generazione interrupt di fine conversione
Le conversioni A/D sono eseguite con la tecnica delle approssimazioni successive e si effettuano tramite un'opportuna manipolazione di appositi registri interni.
Al fine di semplificare la gestione del convertitore A/D, alcuni pacchetti software forniscono delle procedure di utility che gestiscono la sezione in tutte le sue parti.
Per ulteriori informazioni si vedano i documenti nell'APPENDICE A ed il paragrafo CONNESSIONI.
Figura 2: Schema a blocchi

- **CPU AT89C51CC03**
- **2K Boot Loader**
- **LED**
- **DSW1.1 RUN/DEBUG**
- **Controllore Reset ed alimentazione**
- **Linea I2C BUS software**
- **Zoccolo a 40 Pin CN1**
- **Linea seriale TTL**
- **Linea CAN TTL**
- **ALE, /PSEN per espansioni**
- **12 segnali multifunzione TTL**
- **8 segnali Analogici**
- **2K Boot Loader**
- **DSW1**
- **UART**
- **PROM, POR, I/O, COUNTER**
- **Watch Dog**
- **Interrupt**
MEMORIE

La scheda è dotata di un massimo di 70,25K di memoria variamente suddivisi in:

- 64K Bytes FLASH EPROM;
- 2K Bytes FLASH EPROM per il Boot Loader;
- 256 Bytes di IRAM interna;
- 2K Bytes di ERAM esterna;
- 2K Bytes di EEPROM.

Tutte le memorie, ad eccezione della FLASH per il Boot Loader, sono a completa disposizione dell'utente sia per il codice che per i dati del suo programma applicativo. Grazie alla EEPROM del microcontrollore c'è inoltre la possibilità di mantenere i dati anche in assenza di alimentazione. Questa caratteristica fornisce alla scheda la possibilità di ricordare in ogni condizione, una serie di parametri come ad esempio la configurazione o lo stato del sistema. Qualora le quantità di memorie risultino insufficienti (ad esempio per sistemi di data loghin o applicazioni molto articolate) si possono sempre collegare dei dispositivi di memoria esterni nelle tecnologie SRAM, EEPROM, EPROM e FLASH tramite gli appositi segnali di espansione, oppure tramite l'interfaccia I2C BUS descritta prima. Il mappaggio e la gestione delle risorse di memoria avviene direttamente all'interno del microcontrollore come descritto nel paragrafo ACCESSO ALLE MEMORIE e nella documentazione del componente riportata in APPENDICE A di questo manuale.

WATCH DOG

Il microcontrollore 89C51CC03 incorpora un Watch Dog hardware programmabile in grado di resettare la CPU se il programma utente non riesce a triggerrarlo entro il tempo di intervento selezionato. Lo scopo principale di questa sezione é quella di conferire al sistema controllato dal Mini Modulo una sicurezza intrinseca che ne garantisce il lavoro in qualsiasi condizione operativa e che evita pericolosi malfunzionamenti non previsti durante lo sviluppo. Il tempo di intervento della sezione é programmabile in un range piuttosto ampio, da un minimo di circa 6 millisecondi ad 1,7 secondi.

Per ulteriori informazioni si veda la documentazione del microcontrollore o l'APPENDICE A di questo manuale.

CLOCK

Sul modulo GMM ACB Zero é presente una circuiteria basata su un quarzo, che si occupa della generazione del segnale di clock per il microcontrollore. Questa circuiteria genera una frequenza di 14,7456 MHz che viene quindi usata direttamente o indirettamente da tutte le periferiche del modulo che richiedono temporizzazioni, ovvero la linea seriale asincrona, i Timer, il Watch Dog, i canali PCA, il controllore CAN, ecc.

Dal punto di vista delle prestazioni si ricorda che la GMM ACB Zero ha la possibilità di impostare la durata di un ciclo macchina a 12 o 6 cicli di clock (X2 mode) e che se paragonata ad una CPU I51 classica, esegue il codice 2 volte più velocemente.
CONFIGURAZIONE SCHEDA

Allo scopo di rendere configurabile la scheda ed in particolare il programma applicativo sviluppato, è stato previsto un Dip switch ad 8 vie. L'acquisizione via software dello stato di 3 di questi dip, fornisce all'utente la possibilità di gestire diverse condizioni tramite un unico programma, senza dover rinunciare ad altre linee d'ingresso (le applicazioni caratteristiche sono: selezione della lingua di rappresentazione, definizione di parametri del programma, selezione delle modalità operative, ecc).

In aggiunta la scheda ha due LEDs, gestibili via software, che possono essere usati per segnalare visivamente la configurazione attuale della scheda, come descritto negli appositi paragrafi.

Tutte le risorse di configurazione descritte sono completamente gestite via software, tramite la programmazione di appositi registri interni del microcontrollore.

Per ulteriori informazioni si vedano i paragrafi DIP SWITCH, SEGNALAZIONI VISIVE e LEDS DI SEGNALAZIONE.

BUS DI ESPANSIONE

La GMM ACB Zero dispone di una interessante ed innovativa caratteristica per i Mini Moduli grifo® che è la possibilità di ottenere un BUS di espansione. Collegando alcuni dei segnali presenti sul connettore CN1 ad una semplicissima circuiteria esterna si ottiene un vero e proprio BUS parallelo ad 8 bits completo di linee dati, indirizzi e controllo.

Come descritto nel paragrafo ESPANSIONI ESTERNE con questa caratteristica possono essere collegate sia memorie parallele che numerose periferiche di I/O, ottenendo una crescita inaudita delle potenzialità e quindi delle possibili applicazioni.

FIGURA 3: VISTA COMPLESSIVA
CONTROLLORE CAN

Il controllore CAN della **GMM ACB Zero** si preoccupa della completa gestione dell'omonimo protocollo in tutte le sue modalità ed aspetti. In dettaglio si possono brevemente elencare le caratteristiche di questa sezione:

- supporto protocollo BasicCAN (2.0 A);
- supporto protocollo PeliCAN (2.0 B);
- gestione identificatori da 11 e 29 bits;
- 15 gestori di messaggi indipendenti;
- identificatori, maschere e comandi separati per ogni gestore;
- lunghezza buffer di ricezione programmabile;
- temporizzatore programmabile per sincronismi e trigger;
- contatori di errori leggibili;
- genera diversi interrupt a seconda dello stato raggiunto;
- completamente gestibile tramite registri interni del microcontrollore;
- ecc.

Per ulteriori informazioni si veda il paragrafo INTERFACCIA CAN e l’APPENDICE A di questo manuale.

SETTORI DI UTILIZZO

Le possibili applicazioni dei moduli **GMM ACB Zero** sono innumerevoli. Si può citare, ad esempio:

- Il funzionamento come piccoli **nodini intelligenti** con funzionalita' locali come il controllo con algoritmi PID di temperature, motori, valvole, ecc.
- L’uso in **sistemi a logica distribuita** tipo robot, automazioni su macchine di produzione in linea, automazioni di fabbriche di grosse dimensioni.
- La **teleacquisizione** ed il **telecontrollo** su medio brevi distanze.
- L’**automazione domestica** (accensione e spegnimento luci, controllo riscaldamento e condizionamento, supervisone elettrodomestici e servizi elettrici, sistemi di sorveglianza e controllo accesso).
- Il **settore automobilistico** (accensione e spegnimento luci, controllo temperature, supervisone servizi per conducente, sistemi antifurto, diagnostica di funzionamento).
- Anche le **applicazioni CAN** sono possibili, a patto che il Mini Modulo sia integrato con un driver di linea esterno. In dettaglio si ricordano nuovamente le applicazioni nel settore automobilistico; il collegamento su reti CAN con protocolli proprieta' o con protocolli standard come CANopen; DeviceNet; SDS, CAN Kingdom; J1939, ecc..
- Da non dimenticare il settore **didattico** dove la **GMM ACB Zero** offre la possibilita' di apprendere il funzionamento di un microcontrollore della famiglia 51 e di sviluppare le sue applicazioni canoniche ad un costo veramente basso. A questo scopo è ideale abbinarla alle schede di supporto **GMM TST** o **GMM TST 2**, che risolvono i problemi dell'alimentazione, del collegamento seriale al PC di sviluppo, del collegamento delle linee del modulo e che allo stesso tempo dispongono di una tastiera a matrice ed un display LCD che consentono di studiare e provare soluzioni a basso costo per l'interfacciamento operatore.
- Tutti i casi in cui si vogliono ridurre i tempi e costi di sviluppo, infatti il modulo può essere utilizzato direttamente su una scheda di supporto dell'utente, come un **macro componente**.
FIGURA 4: PIANTA COMPONENTI (LATO SUPERIORE)

FIGURA 5: PIANTA COMPONENTI (LATO INFERIORE)
CARATTERISTICHE TECNICHE

CARATTERISTICHE GENERALI

Risorse della scheda:
- 34 linee di I/O digitale TTL
- 8 ingressi analogici su A/D converter
- 5 sezioni PCA per comparazione, cattura, PWM, frequenze
- 1 sezione Watch Dog
- 3 Timer, Counter multifunzione
- 19 sorgenti e 4 livelli di interrupt
- 1 circuiteria di reset e controllo alimentazione
- 1 linea seriale RS 232 o TTL
- 1 controllore CAN
- 1 Dip switch ad 8 vie
- 2 LEDs di segnalazione

Memorie:
- 64K Bytes FLASH programma utente
- 2K Bytes FLASH boot loader
- 2K Bytes EEPROM dati utente (ultimi 8 Bytes riservati)
- 2K Bytes ERAM dati utente
- 256 Bytes IRAM dati utente

Microcontrollore: Atmel 89C51CC03

Frequenza clock: 14,7465 MHz

Risoluzione A/D: 10 bit

Tempo conversione A/D: 20 µsec

Tempo reset: tipico 200 msec

Tempo intervento Watch Dog: programmabile da circa 6 msec ad 1,7 sec

CARATTERISTICHE FISICHE

Dimensioni (L x A x P): 21 x 54 x 13 mm

Peso: 9 g

Connettore: CN1: zoccolo maschio da 40 piedini, passo 100 mils, largo 600 mils

Range di temperatura: da 0 a 50 gradi Centigradi

Umidità relativa: 20% fino a 90% (senza condensa)
CARATTERISTICHE ELETTRICHE

Tensione di alimentazione: +5 Vdc ± 5%

Consumo di corrente:
- 48 mA * (normale)
- 64 mA * (massimo)

Range ingressi analogici: 0÷Vref

Tensione riferimento A/D Vref: 0÷3 V

Impedenza ingressi analogici: elevata

Soglia controllore alimentazione: tipica 4,65 Vdc

Protezione RS 232: ±15 kV

* I dati riportati sono riferiti ad un lavoro a temperatura ambiente di 20 gradi centigradi (per ulteriori informazioni fare riferimento al paragrafo ALIMENTAZIONE).

FIGURA 6: VISTA DALL'ALTO
INSTALLAZIONE

In questo capitolo saranno illustrate tutte le operazioni da effettuare per il corretto utilizzo della scheda. A questo scopo viene riportata l’ubicazione e la funzione dei connettori, dei LEDs, Dip switch, ecc. presenti sulla GMM ACB Zero.

SEGNALAZIONI VISIVE

Il Mini Modulo GMM ACB Zero è dotato delle segnalazioni visive descritte nella seguente tabella:

<table>
<thead>
<tr>
<th>LED</th>
<th>COLORE</th>
<th>SIGNIFICATO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1</td>
<td>Verde</td>
<td>Se acceso, indica che la linea P2.6 (pin 5 del Mini Modulo) è a livello basso (zero volt) o che DSW1.7 è in posizione ON.</td>
</tr>
<tr>
<td>LD2</td>
<td>Rosso</td>
<td>Se acceso, indica che la linea P2.7 (pin 6 del Mini Modulo) è a livello basso (zero volt) o che DSW1.6 è in posizione ON.</td>
</tr>
</tbody>
</table>

Figura 7: Tabella delle segnalazioni visive

La funzione principale di questi LEDs è quella di fornire un'indicazione visiva dello stato della scheda, facilitando quindi le operazioni di debug e di verifica il funzionamento di tutto il sistema. Per una più facile individuazione di tali segnalazioni visive, si faccia riferimento alla figura 8, mentre per ulteriori informazioni sull'attivazione dei LED si faccia riferimento al paragrafo LEDS DI SEGNALAZIONE.

ALIMENTAZIONE

Il Mini Modulo deve essere alimentato mediante una tensione di +5 Vdc ± 5% da fornire sugli appositi piedini 20 e 34 di CN1. Sulla scheda sono state adottate tutte le scelte circuitali e componentistiche che tendono a ridurre la sensibilità ai disturbi ed i consumi, compresa la possibilità di far lavorare il microcontrollore in diverse modalità a basso assorbimento che ad esempio salvaguardano la durata di batterie, nel caso di applicazioni portatili. In dettaglio si possono utilizzare le modalità operative di power down ed idle che consentono di definire la frequenza di lavoro del microcontrollore e sono selezionate programmando l'apposito registro interno PCON. Il programma applicativo sviluppato dall'utente può quindi ridurre il consumo sull'alimentazione ed eventualmente ripristinare il funzionamento normale in corrispondenza di un evento presettabilito come ad esempio un interrupt, variazione di un ingresso digitale e/o analogico, intervallo di tempo trascorso, ecc. Per ulteriori informazioni si faccia riferimento al paragrafo CARATTERISTICHE ELETTRICHE.
Il Mini Modulo **GMM ACB Zero** è provvisto di 1 connettore con cui vengono effettuati tutti i collegamenti con il campo e con le altre schede del sistema di controllo da realizzare.

Di seguito viene riportato la disposizione ed il significato dei segnali collegati: per una facile individuazione di tale connettore, si faccia riferimento alla figura 8, mentre per ulteriori informazioni a riguardo del tipo di connessioni, fare riferimento alle figure successive che illustrano il tipo di collegamento effettuato a bordo scheda e presentano alcuni dei collegamenti più frequentemente richiesti.

Tutti i connettori delle schede **grifo®** rispettano una disposizione segnali standard in modo da poter facilmente sostituire una scheda anche con un modello diverso, senza tempi e costi aggiuntivi.

CONNESSIONI

FIGURA 8: DISPOSIZIONE LEDs, CONNETTORI, DIP SWITCH
CN1 - CONNETTORE CON SEGNALI DEL MINI MODULO

Il connettore CN1 è uno zoccolo maschio da 40 piedini con passo 100 mils e larghezza 600 mils. Su questo connettore sono presenti tutti i segnali d'interfacciamento del mini modulo come l'alimentazione, le linee di I/O, le linee di comunicazione seriale sincrona ed asincrona, i segnali delle periferiche hardware di bordo, i segnali di espansione, ecc.

Numerosi piedini di questo connettore hanno una duplice o triplice funzione infatti, via software, alcune sezioni interne del microcontrollore possono essere multiplexate con i segnali di I/O e per completezza la seguente figura li riporta tutti. I segnali presenti su CN1 sono quindi di diversa natura, come descritto nel successivo paragrafo INTERFACCIA CON IL CAMPO e seguono il pin out standardizzato dei Mini Moduli grifo®.

Al fine di evitare problemi di conteggio e numerazione la figura 9 descrive i segnali direttamente sulla vista dall'alto della GMM ACB Zero, inoltre la serigrafia riporta la numerazione sui 4 angoli della scheda sia sul lato superiore che inferiore.

![Figura 9: CN1 - Zoccolo con segnali del Mini Modulo](image)

Legenda:

RX RS232 = I - Receive Data: linea di ricezione seriale bufferata in RS 232
TX RS232 = O - Transmit Data: linea di trasmissione seriale bufferata in RS 232
RX TTL = I - Receive Data: linea di ricezione seriale TTL
TX TTL = O - Transmit Data: linea di trasmissione seriale TTL
Px.n = I/O - Segnale n del Port x di I/O digitale del microcontrollore
DSW1.n = O - Segnale collegato al contatto n del Dip switch DSW1 che chiude verso massa
LDn = O - Segnale collegato al LED di segnalazione LDn
/INTn = I - Linea d'interrupt n del microcontrollore
Tn = I - Segnale collegato alla sezione Timern del microcontrollore
T2EX = I - Segnale di trigger esterno per Timer 2
SCL = I/O - Linea clock dell'interfaccia I2C BUS software
SDA = I/O - Linea dati dell'interfaccia I2C BUS software
RxD CAN = I - Linea di ricezione controllore CAN
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxD CAN</td>
<td>= O - Linea di trasmissione controllore CAN.</td>
</tr>
<tr>
<td>Vref</td>
<td>= I - Tensione di riferimento dell'A/D converter</td>
</tr>
<tr>
<td>ANn</td>
<td>= I - Ingressi analogici collegati a sezione A/D converter</td>
</tr>
<tr>
<td>CEXn</td>
<td>= I/O - Segnale collegato alla sezione PCA (uscite PWM, ingressi cattura e comparazione, ecc.)</td>
</tr>
<tr>
<td>ECI</td>
<td>= I - Ingresso di clock esterno delle sezioni PCA</td>
</tr>
<tr>
<td>ADn</td>
<td>= I/O - Segnali di indirizzo bassi e segnali dati del BUS di espansione</td>
</tr>
<tr>
<td>An</td>
<td>= O - Segnali di indirizzo alti del BUS di espansione</td>
</tr>
<tr>
<td>/WR</td>
<td>= O - Segnale di scrittura area dati del BUS di espansione</td>
</tr>
<tr>
<td>/RD</td>
<td>= O - Segnale di lettura area dati del BUS di espansione</td>
</tr>
<tr>
<td>/PSEN</td>
<td>= O - Segnale di lettura area codice del BUS di espansione</td>
</tr>
<tr>
<td>ALE</td>
<td>= O - Segnale di latch per indirizzi bassi del BUS di espansione</td>
</tr>
<tr>
<td>/RES</td>
<td>= I - Segnale di reset</td>
</tr>
<tr>
<td>+5 Vdc</td>
<td>= I - Linea di alimentazione +5 Vdc</td>
</tr>
<tr>
<td>GND</td>
<td>= - Linea di massa</td>
</tr>
</tbody>
</table>

RESET, CONTROLLO ALIMENTAZIONE, WATCH DOG

Sulla **GMM ACB Zero**, sono presenti tre diverse sorgenti di reset, che possono essere così riassunte:

1) Circuiteria di controllo alimentazione che attiva il reset quando la tensione di alimentazione scende al di sotto della soglia di 4,65 Vdc.
2) Segnale collegato al pin 8 di CN1, attivo basso, che può essere collegato anche ad un semplice pulsante normalmente aperto e che, una volta premuto, collega il segnale /RES alla massa GND. La sua funzione principale è quella di uscire da condizioni di loop infinito, soprattutto durante la fase di debug oppure per rieseguire il programma applicativo senza dover interrompere l'alimentazione della scheda.
3) Circuiteria di Watch Dog, interna al microcontrollore, molto efficiente e di facile gestione software. In dettaglio le caratteristiche di questa circuiteria sono le seguenti:
 - funzionamento astabile;
 - tempo d'intervento programmabile via software da circa 6 msec fino a circa 1700 msec;
 - attivazione via software tramite doppia scrittura consecutiva su registri di gestione;
 - retrigger via software.

Nel funzionamento astabile una volta scaduto il tempo d’intervento, la circuiteria si attiva, rimane attiva per il tempo di reset e poi si disattiva nuovamente. Si ricorda che la funzione principale della circuiteria di Watch Dog è quella di conferire una sicurezza intrinseca per la corretta esecuzione del programma da parte della scheda. Infatti se il programma non è più eseguito regolarmente, non effettua il retrigger periodico della circuiteria e questa quindi interviene resettando la scheda, come descritto. Per maggiori informazioni sulla circuiteria di Watch Dog e sull’operazione di retrigger, fare riferimento alla documentazione del microcontrollore oppure all'APPENDICE A di questo manuale.

Per le prime due sorgenti, la circuiteria di reset rimane attiva per 200 msec e poi si disattiva, mentre per la terza rimane attiva solo per pochi µsec. A questo punto tutte le sezioni della scheda vengono resettate per garantire una condizione di azzerramento generale e la scheda riprende l’esecuzione del programma salvato in FLASH all’indirizzo 0000H.

La circuiteria di reset così realizzata assicura il corretto funzionamento della scheda e dell’eventuale elettronica collegata, in ogni condizione operativa e soprattutto nella sempre difficile fase di accensione e spegnimento.
DIP SWITCH

A bordo del Mini Modulo **GMM ACB Zero** è presente un Dip switch ad 8 vie, denominato DSW1, con cui è possibile effettuare alcune selezioni che riguardano il modo di funzionamento dello stesso. Nelle seguenti figure ne è riportato l’elenco e la loro funzione nelle varie modalità di connessione.

FIGURA 10: TABELLA UTILIZZO DIP SWITCH (1 di 2)

<table>
<thead>
<tr>
<th>SWITCH</th>
<th>POSIZIONE</th>
<th>UTILIZZO</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>Collega la linea /PSEN del microcontrollore alla massa (zero volt). Se il Mini Modulo viene acceso o resettato in questa condizione si attiva la modalità DEBUG e parte il Boot Loader. Non collega la linea /PSEN del microcontrollore. Se il Mini Modulo viene acceso o resettato in questa condizione si attiva la modalità RUN e parte il programma memorizzato nella FLASH del microcontrollore.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ON</td>
<td>Collega il segnale di trasmissione, sul pin 10 di CN1, al driver seriale RS 232. DSW1.4 deve essere aperto per evitare conflitti. Usato in coppia con gli switch 3, 4, e 5. Non collega il segnale di trasmissione sul pin 10 di CN1 al driver seriale RS 232, consentendo il collegamento diretto al microcontrollore.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>Collega il segnale di ricezione, sul pin 9 di CN1, al driver seriale RS 232. DSW1.5 deve essere aperto per evitare conflitti. Usato in coppia con gli switch 2, 4 e 5. Non collega il segnale di ricezione, sul pin 9 di CN1, al driver seriale RS 232, consentendo il collegamento diretto al microcontrollore.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ON</td>
<td>Collega il segnale di trasmissione, sul pin 10 di CN1, direttamente al microcontrollore. DSW1.2 deve essere aperto per evitare conflitti. Usato in coppia con gli switch 2, 3 e 5. Non collega il segnale di trasmissione, sul pin 10 di CN1, al microcontrollore, consentendo il collegamento al driver seriale RS 232.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ON</td>
<td>Collega il segnale di ricezione, sul pin 9 di CN1, direttamente al microcontrollore. DSW1.3 deve essere aperto per evitare conflitti. Usato in coppia con gli switch 2, 3 e 4. Non collega il segnale di ricezione, sul pin 9 di CN1, al microcontrollore, consentendo il collegamento al driver seriale RS 232.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ON</td>
<td>Collega il pin 6 del Mini Modulo a massa. Questo condizione pone a livello logico 0 il segnale P2.7 del microcontrollore, agendo come ingresso di configurazione acquisibile via software. Inoltre accende il LED LD2. Non collega il pin 6 del Mini Modulo lasciando il segnale P2.7, ed il LED LD2, gestibili da utente.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Negli elenchi precedenti l'* (asterisco) indica la configurazione di default, ovvero quella impostata in fase di collaudo, con cui la scheda viene fornita. L'utente può verificare la configurazione base ricevuta, anche nell'APPENDICE C del manuale.
Per individuare facilmente la posizione del Dip switch si faccia riferimento alla figura 8.

### SWITCH	POSIZIONE	UTILIZZO	DEF.
7	ON	Collega il pin 5 del Mini Modulo a massa. Questa condizione pone a livello logico 0 il segnale P2.6 del microcontrollore, agendo come ingresso di configurazione acquisibile via software. Inoltre accende il LED LD1. Non collega il pin 5 del Mini Modulo lasciando il segnale P2.6, ed il LED LD1, gestibili da utente.	*
OFF			

8 | ON | Collega il pin 11 del Mini Modulo a massa. Questa condizione pone a livello logico 0 il segnale P2.5 del microcontrollore, agendo come ingresso di configurazione acquisibile via software. Non collega il pin 11 del Mini Modulo lasciando il segnale P2.5 gestibile da utente. | *
| OFF | | | |

FIGURA 11: TABELLA UTILIZZO DIP SWITCH (2 DI 2)

INTERRUPTS

Una caratteristica peculiare della **GMM ACB Zero** è la notevole potenza nella gestione delle interruzioni. Di seguito viene riportata una breve descrizione di quali sono i dispositivi che possono generare interrupts e con quale modalità; per quanto riguarda la gestione di tali interrupts si faccia riferimento alla documentazione del microprocessore oppure all'APPENDICE A di questo manuale.

- Pin 25 di CN1 -> Genera un /INT0 = P3.2 sul microcontrollore.
- Pin 24 di CN1 -> Genera un /INT1 = P3.3 sul microcontrollore.
- Periferiche di bordo -> Generano un interrupt interno. In particolare le possibili sorgenti d'interrupt interno sono le sezioni: Timer 0, Timer 1, Timer 2, PCA, UART seriale, A/D converter, controllore CAN, temporizzatore CAN, ecc.

Complessivamente il modulo dispone di 19 sorgenti d'interrupt e di 4 livelli di priorità ed incorporata nel microcontrollore si trova la logica di gestione degli interrupt che consente di attivare, disattivare, mascherare le sorgenti e che regolamenta l'attivazione contemporanea di più interrupts. In questo modo l’utente ha sempre la possibilità di rispondere in maniera efficace e veloce a qualsiasi evento esterno, stabilendo anche la priorità delle varie sorgenti.
INTERFACCIAMENTO CON IL CAMPO

Al fine di evitare eventuali problemi di collegamento della scheda con tutta l’elettronica del campo a cui la **GMM ACB Zero** si deve interfacciare, si devono seguire le informazioni riportate in tutto il manuale e le relative figure che illustrano le modalità interne di connessione.

- Per i segnali che riguardano la comunicazione seriale con il protocollo RS 232 fare riferimento alle specifiche standard di questo protocollo.

- Tutti i segnali a livello TTL possono essere collegati a linee dello stesso tipo riferite alla massa digitale della scheda. Il livello 0V corrisponde allo stato logico 0, mentre il livello 5V corrisponde allo stato logico 1. La connessione di tali linee ai dispositivi del campo (fine corsa, encoder, elettrovalvole, relè di potenza, ecc.) deve avvenire tramite apposite interfacce che preferibilmente devono essere optoisolate in modo da mantenere la logica del Mini Modulo separata dagli eventuali disturbi dell’elettronica di potenza.

- I segnali d’ingresso alla sezione A/D devono essere collegati a segnali analogici a bassa impedenza che rispettino il range di variazione ammesso ovvero da 0 a 3 Vdc. Queste indicazioni valgono anche per la tensione di riferimento Vref che inoltre deve essere perfettamente filtrata e stabilizzata.

- I segnali PWM generati dalle sezioni Timer, Counter e PCA, sono a livello TTL e devono essere quindi opportunamente bufferati per essere interfacciati all’azionamento di potenza. Le classiche circuiterie da interporre possono essere dei semplici driver di corrente se è ancora necessario un segnale PWM, oppure un integratore qualora sia necessario un segnale analogico.

- Anche i segnali I2C BUS software sono a livello TTL, come definito dallo stesso standard; per completezza si ricorda solo che, dovendo realizzare una rete con numerosi dispositivi e con una discreta lunghezza, si deve studiare attentamente il collegamento e configurare opportunamente lo stadio d’uscita, le molteplici modalità operative ed il bit rate in modo da poter comunicare in ogni condizione operativa. In ogni collegamento I2C BUS ci devono essere due resistenze di pull up alle estremità della stessa, come definito dalle specifiche standard di questa interfaccia.

- I segnali di comunicazione CAN sono a livello TTL e non possono essere collegati direttamente ai segnali delle linee CAN, bensì si deve interporre un adeguato driver di linea, come indicato nel paragrafo INTERFACCIA CAN.

SELEZIONE COMUNICAZIONE SERIALE

La linea di comunicazione seriale asincrona della scheda **GMM ACB Zero** può essere bufferata in RS 232 o TTL. Nel caso venga bufferata in RS 232, i segnali della linea sono protetti da scariche fino a ±15 KV.

Dal punto di vista software sulla linea può essere definito il protocollo fisico di comunicazione tramite la programmazione di alcuni registri interni del microprocessore.

La selezione del protocollo elettrico avviene via hardware e richiede un’opportuna configurazione del Dip switch di bordo, come descritto nelle precedenti tabelle; l’utente può autonomamente passare da una configurazione all’altra seguendo le informazioni riportate di seguito:
- LINEA SERIALE SETTATA IN TTL

DSW1.2 = OFF
DSW1.3 = OFF
DSW1.4 = ON
DSW1.5 = ON

FIGURA 12: ESEMPIO COLLEGAMENTO SERIALE TTL

- LINEA SERIALE SETTATA IN RS 232 (configurazione default)

DSW1.2 = ON
DSW1.3 = ON
DSW1.4 = OFF
DSW1.5 = OFF

FIGURA 13: ESEMPIO COLLEGAMENTO SERIALE RS 232
SELEZIONE MODO OPERATIVO

Come descritto nella figura 10 e nei successivi paragrafi il Dip switch DSW1.1 seleziona il modo operativo del Mini Modulo GMM ACB Zero. In particolare sono disponibili 2 modi operativi corrispondenti alle seguenti configurazioni:

<table>
<thead>
<tr>
<th>DSW1.1</th>
<th>Modo operativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Modalità RUN</td>
</tr>
<tr>
<td>ON</td>
<td>Modalità DEBUG</td>
</tr>
</tbody>
</table>

In modalità RUN a seguito di un'accensione o reset parte sempre il programma applicativo salvato in FLASH indipendentemente dalle condizioni esterne, mentre in modalità DEBUG parte il Boot Loader del microcontrollore.

Programmi per PC come il FLIP comunicano con il Boot Loader attraverso la porta seriale e permettono di leggere, cancellare e riscrivere le memorie di bordo del microcontrollore in modalità ISP.

La programmazione ISP (In System Programming) riduce i costi ed i tempi di sviluppo dell'applicazione, infatti elimina la necessità di usare EPROM esterne, programmatori, cancellatori, ecc. Per ulteriori informazioni sulla programmazione ISP si prega di consultare il capitolo COME INIZIARE oppure la specifica documentazione tecnica rilasciata dalla ATMEL.

ESPANSIONI ESTERNE

Sul connettore CN1 sono disponibili tutti i segnali necessari per creare un BUS esterno al Mini Modulo che consente di collegare numerosi dispositivi e quindi di espandere le risorse e le funzionalità della GMM ACB Zero.

Le caratteristiche fondamentali del BUS di espansione sono elencate nei seguenti punti:

- BUS di tipo parallelo.
- Dotato di 8 bits di dati e 16 bits di indirizzi.
- Completo dei segnali di controllo necessari per effettuare sia accessi su area dati che su area codice, secondo le modalità tipiche del microcontrollore.
- Spazi di indirizzamento massimi: 64K Bytes solo in area dati infatti l'area codice é completamente occupata dai 64K FLASH di bordo.
- Semplice circuiteria d'interfacciamento che normalmente richiede un solo latch (ad esempio un componente 74HCT573) che memorizza lo stato della parte bassa degli indirizzi multiplexati con i dati.
- Adatto al collegamento di memorie parallele esterne come SRAM, EPROM, FLASH EPROM, EEPROM.
- Adatto al collegamento di qualsiasi periferica esterna dotata a sua volta di un BUS parallelo, come controllori di I/O digitali, A/D converter, D/A converter, controllori di comunicazione seriale (CAN, USB, seriali asincrone, ecc.), contatori hardware, ecc.
- Il BUS di espansione può essere facilmente usato per ricreare un'interfaccia standard ABACO® I/O BUS su cui sono già disponibili numerose schede periferiche grifo® pronte all'uso.
- Facile gestione software del BUS di espansione che viene indirizzato con tutte le istruzioni di accesso alla memoria esterna disponibili nel microcontrollore o nel linguaggio di programmazione scelto.
Lo schema a blocchi nella seguente figura illustra in maniera semplificata la realizzazione del BUS di espansione per la modalità di indirizzamento disponibile.

Figura 14: BUS espansione per area dati

Per schemi elettrici dettagliati e/o maggiori informazioni contattare direttamente la grifo® ed esaminare la documentazione tecnica del microcontrollore.

INTERFACCIA CAN

Dal punto di vista elettrico il CAN BUS, secondo lo standard ISO-11898, coincide con una linea differenziale con impedenza di 60 Ω. Tale linea è notevolmente diversa dalle due linee di comunicazione CAN presenti su CN1 che infatti sono a livello TTL. Per questa ragione il collegamento della GMM ACB Zero ad una qualsiasi interfaccia CAN deve essere effettuato interponendo un apposito driver di linea CAN.

Per informazioni dettagliate su tale driver si consiglia di leggere la documentazione tecnica del componente scelto, che spesso riporta anche schemi applicativi (si veda ad esempio il componente PHILIPS P82C250).

Realizzando un corretto collegamento del driver sia sui segnali TTL provenienti dal controllore del Mini Modulo che su quelli differenziali del BUS CAN si può arrivare alla velocità di 1 Mbit/sec rendendo possibile la comunicazione con qualsiasi sistema dotato della stessa interfaccia. Ad esempio si suggerisce di prevedere lungo la linea CAN due resistenze di terminazione (120 Ω), alle estremità della stessa, che assicurano la giusta impedenza; qualora i sistemi collegati sulla rete CAN risultino a differenze di potenziale elevate si può ovviare ad eventuali problemi di comunicazione e/o funzionamento, collegando anche le masse dei sistemi.

La grifo® dispone di una ricca serie di schede dotate di interfaccia CAN pronte all'uso, anche nel formato Mini Modulo: l'utente prima di aggiungere il driver alla GMM ACB Zero può esaminare l'utilizzo di questi prodotti.
SCHEDE DI SUPPORTO

Il Mini Modulo GMM ACB Zero può essere utilizzato come macro componente per alcune schede di supporto sia sviluppate dall'utente che già disponibili nel carteggio grifo®. Nei successivi paragrafi vengono illustrate gli abbinamenti con le schede di supporto più interessanti.

UTILIZZO CON MODULO GMB HR168

La GMB HR168 si distingue per essere una scheda che fornisce ai Mini Moduli da 28 o 40 pin di essere collegati ai segnali del campo tramite delle apposite circuiterie di potenza optoisolate, in modo da essere facilmente e velocemente installati nei quadri elettrici del sistema da realizzare. La descrizione completa del prodotto è disponibile nel relativo foglio e manuale tecnico, mentre in questo paragrafo sono riportate le potenzialità offerte e la configurazione richiesta da questa accoppiata.

La GMB HR168 permette facilmente di:

- alimentare il Mini Modulo tramite lo switching di bordo che accetta un ingresso ad ampio range sia in continua che alternata;

- riportare sedici linee dei porti di I/O sugli ingressi optoisolati che possono essere indifferentemente di tipo NPN o PNP. Lo stato di tutti i 16 ingressi viene visualizzato tramite LEDs verdi e gialli. Essendo le linee multiplexate con le periferiche interne è possibile creare rapidamente funzioni evolute come contatori, riconoscimento combinazioni, gestore di eventi; ecc.;

- fornire una alimentazione galvanicamente isolata per gli ingressi NPN o PNP, in modo da poter collegare all’esterno dei semplici ed economici contatti puliti;

- riportare otto linee dei porti di I/O su uscite a Relè visualizzate tramite LEDs rossi;

- avere l’interfaccia I2C BUS, completa di alimentazione, su un connettore dedicato;

- collegare la linea di comunicazione seriale tramite un connettore AMP MODU II da 8 vie;

- bufferare, esternamente al Mini Modulo, i segnali della linea seriale TTL in RS 422, RS 485 o Current Loop passivo;

- collegare i segnali PWM su un connettore AMP MODU II da 8 vie;

- fornire la tensione di riferimento per la sezione A/D e collegare un ingresso analogico;

- con l’opzione .RTC, avere a bordo un Real Time Clock capace di gestire ora e data, generare interrupt periodici e dotato di 240 bytes di SRAM, tamponati con una batteria al Litio;

- cablare facilmente tutti i segnali tramite connettori a morsettiera a rapida estrazione ed altri connettori standard;

- effettuare un montaggio meccanico su barra ad omega.
La seguente configurazione consente di usare l'accoppiata GMB HR168 + GMM ACB Zero in modalità RUN, con linea seriale in RS 232:

GMM ACB Zero

- DSW1.1 = OFF
- DSW1.2 = ON
- DSW1.3 = ON
- DSW1.4 = OFF
- DSW1.5 = OFF
- DSW1.6 = OFF
- DSW1.7 = OFF
- DSW1.8 = OFF

GMB HR168

- J1, J2 = 2-3
- J3, J4 = non connessi
- J5 = 2-3
- J6, J7, J8 = 2-3
- J9 = non connesso
- J10 = 1-2, 4-5
- J11 = 1-2
- J12 = connesso
- J13, J19, J20 = non connessi
- J14 = 1-2
- J15 = 1-2
- J16 = 2-3
- J17 = 2-3
- J18 = 2-3

Cavo collegamento seriale con PC di sviluppo = **AMP8 Cable** con vaschetta D9 Femmina.
 UTILIZZO CON SCHEDA GMM TST E GMM TST 2

Nel carteggio grifo® le GMM TST e GMM TST 2 si distinguono per essere le schede valutative progettate esplicitamente per fare da supporto ai Mini Moduli GMM xxx da 28 e 40 pins. La GMM TST 2 è un’evoluzione della GMM TST, ma per il mini modulo GMM ACB Zero possono essere usate entrambe indifferenemente. Nel presente manuale si descrive principalmente la GMM TST ma l’utente può facilmente usare l’altro modello seguendo le indicazioni del relativo manuale tecnico. Nell’APPENDICE B viene riportato anche lo schema elettrico completo di questa scheda di supporto.
La GMM TST 2 permette di:

- alimentare il Mini Modulo tramite l’alimentatore lineare di bordo che accenta un ingresso ad ampio range sia in continua che alternata;

- riportare le linee dei port di I/O e dell'A/D converter su connettori a scatolino compatibili con lo standard I/O ABACO® su cui sono disponibili schede di pilotaggio I/O digitali di diversi tipi (relé, transistor, ingressi optoisolati, LEDs e pulsanti, ecc.);

- collegare la linea seriale RS 232 tramite un connettore a vaschetta D9 femmina;

- impostare e visualizzare lo stato di 2 linee di I/O, del Mini Modulo e tramite pulsanti e LEDs di colori differenti, escludibili tramite jumper;

- generare feedback sonori mediante il buzzer di bordo;

- fornire la tensione di riferimento per la sezione A/D;

- azzerare il Mini Modulo montato tramite un comodo pulsante di reset;

- sviluppare rapidamente e confortevolmente applicazioni di interfaccia utente avvalendosi della tastiera a matrice 4x4 da 16 tasti e del display LCD retroilluminato da 2 righe di 20 caratteri;

- sviluppare una scheda di supporto secondo le esigenze dell’utente, partendo dallo schema elettrico fornito;

- gestire la programmazione del Mini Modulo tramite appositi programmatori ISP esterni (caratteristica non utilizzabile con la GMM ACB Zero).

La seguente configurazione consente di usare l’accoppiata GMM TST 2 + GMM ACB Zero in modalità RUN, con linea seriale in RS 232:

<table>
<thead>
<tr>
<th>Configurazione GMM ACB Zero</th>
<th>Configurazione GMM TST 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSW1.1 = OFF</td>
<td>J1 = 2-3</td>
</tr>
<tr>
<td>DSW1.2 = ON</td>
<td>J2 = 2-3</td>
</tr>
<tr>
<td>DSW1.3 = ON</td>
<td>J3 = 1-2</td>
</tr>
<tr>
<td>DSW1.4 = OFF</td>
<td>J4 = 2-3</td>
</tr>
<tr>
<td>DSW1.5 = OFF</td>
<td>J5 = 2-3</td>
</tr>
<tr>
<td>DSW1.6 = OFF</td>
<td>J6 = 2-3</td>
</tr>
<tr>
<td>DSW1.7 = OFF</td>
<td>J7 = 2-3</td>
</tr>
<tr>
<td>DSW1.8 = OFF</td>
<td></td>
</tr>
</tbody>
</table>

Cavo collegamento seriale con PC di sviluppo = CCR 9+9E (ovvero cavo prolunga con vaschetta D9 Femmina e D9 Maschio).
FIGURA 16: ACCOPPIATA GMM TST + GMM ACB ZERO

In corrispondenza del primo ordine viene fornita una ricca serie di programmi dimostrativi che consentono di utilizzare sia le risorse del Mini Modulo, che quelle della scheda di supporto, immediatamente.
COME INIZIARE

In questo capitolo vengono illustrate le operazioni da effettuare per iniziare ad usare la **GMM ACB Zero** in maniera rapida e lineare, senza dover affrontare alcun problema tipico del primo uso. Il capitolo è composto da alcune parti comuni ed altre che invece si differenziano a seconda dell'ambiente di sviluppo usato. Inoltre si ipotizza che l'utente disponga degli accessori (di alimentazione e collegamento seriale) e di un PC provvisto dei requisiti minimi necessari ad eseguire i programmi descritti nei seguenti punti; tale PC viene identificato con il nome PC di sviluppo ed i suoi requisiti sono riportati nella documentazione degli stessi programmi usati.

A) PREDISPOSIZIONE COLLEGAMENTI

A1) Per prima cosa dovete effettuare il collegamento seriale tra il Mini Modulo **GMM ACB Zero** ed il PC di sviluppo, ovvero collegare i due segnali di comunicazione (TX RS232, RX RS232) e la massa di riferimento (GND). Naturalmente questa connessione varia a seconda dell'eventuale scheda di supporto usata ed in generale è quella riportata nella seguente figura.

![Cable Diagram](image-url)

FIGURA 17: COLLEGAMENTO SERIALE RS 232 TRA GMM ACB ZERO E PC

Come si può notare dalla figura 17, in caso di utilizzo dell'accoppiata **GMM TST 2 + GMM ACB Zero**, il cavo di collegamento seriale coincide con un normale cavo dritto con vaschetta D9 (quelli ad esempio usati per la comunicazione con Modem RS 232) che può essere anche ordinato alla grifo® specificando il codice CCR 9+9E.

A2) Provvedere un'alimentazione adeguata: in caso di utilizzo del solo mini modulo tale alimentazione deve essere fornita come descritto nel paragrafo ALIMENTAZIONE, ad esempio usando un alimentatore da laboratorio. Qualora si utilizzi una accoppiata si possono sfruttare diverse sorgenti di alimentazione, come descritto nel manuale tecnico della scheda di supporto usata.
B) PROVA PROGRAMMA DEMO SALVATO NEL MINI MODULO

B1) Avviare il programma di emulazione terminale HYPERTERMINAL sul PC di sviluppo ed impostare la comunicazione a:

- Connetti: direttamente a COMx (quella usata al punto A1)
- Bit per secondo: 19200
- Bit di Dati: 8
- Parità: Nessuna
- Bit di Stop: 1
- Controllo di flusso: Nessuno

Si ricorda che HYPERTERMINAL è un programma fornito assieme al sistema operativo Windows e può essere facilmente lanciato seguendo il percorso: Avvio | Programmi | Accessori | Comunicazioni | HyperTerminal. In alternativa si possono usare anche altri programmi, come l'emulatore terminale incorporato nel compilatore BASCOM 8051.

B2) Impostare la modalità RUN, ovvero posizionare il Dip switch DSW1.1 della GMM ACB Zero in posizione OFF.

B3) Fornire l'alimentazione o resettare il Mini Modulo e verificare che il LED, od i LEDs, lampeggino continuamente e che sul monitor del PC di sviluppo compaia la presentazione del programma demo. Ogni GMM ACB Zero, in caso di primo acquisto, viene fornita con il rispettivo programma demo già programmato nella FLASH interna e configurato per farlo partire all'accensione con le funzionalità descritte. Se non vedete accadere quanto descritto, riverificate l'alimentazione, la connessione seriale e che DSW1.1 sia in OFF.

B4) Eseguire le funzioni del demo in modo da provare le risorse disponibili sul Mini Modulo e verificarne gli effetti: l'utente può interagire con il demo usando il PC di sviluppo come una console.

B5) Terminata la prova del demo, togliere alimentazione alla GMM ACB Zero.

B6) Uscire dal programma HYPERTERMINAL sul PC di sviluppo.

C) RIPROGRAMMAZIONE DELLA FLASH CON PROGRAMMA DEMO

C1) Sul CD grifo® ricevuto, localizzare e quindi installare sul disco rigido del PC di sviluppo il programma di utility FLIP. Questo gestisce la programmazione ISP della FLASH presente sulla GMM ACB Zero e comunica con il Boot Loader presente sullo stesso modulo. In alternativa potete trovare l'ultima versione gratuita di questo programma sul sito Atmel: www.atmel.com.

C2) Creare sul disco rigido del PC di sviluppo una cartella in cui intendete salvare tutto il lavoro svolto.
C3) Individuare il programma demo della **GMM ACB Zero** sul CD **grifo®** ricevuto: tale file ha il nome rappresentato alla partenza dello stesso programma, al punto B3, ed è raggiungibile a partire dalla pagina iniziale seguendo il percorso: **Italiano | Programmi di Esempio | Programmi Mini Moduli e Mini Block**. Nella tabella che compare si deve cliccare il pallino rosso situato all’incrocio tra la colonna con il linguaggio di programmazione usato e la riga con il nome della scheda (**GMM ACB Zero** o **GMM AC Zero**).

C4) Copiare tutti i file presenti dalla cartella individuata al punto precedente, alla cartella di lavoro creata al punto C2. A copia ultimata assicurare che i file su disco rigido abbiano l’attributo di **Sola lettura** disattivo.

C5) Impostare la modalità DEBUG, ovvero posizionare il Dip switch DSW1.1 della **GMM ACB Zero** in posizione ON.

C6) Togliere e, successivamente, ridare alimentazione al Mini Modulo, oppure resettarlo.
C7) Lanciare il programma FLIP installato al punto C1. Salvo diverse impostazioni effettuate durante la stessa installazione si può usare il collegamento Avvio | Programmi | ATMEL | FLIP x.y.z | FLIP.

C8) Selezionare il dispositivo da programmare, premendo il primo pulsante in alto a sinistra, poi scegliendo il nome AT89C51CC03 nella finestra che appare e premendo OK:

![Device Selection](image)

FIGURA 19: FINESTRA SETTAGGIO FLIP (1 DI 3)

C9) Impostare la modalità di comunicazione per la programmazione ISP ovvero premere il secondo pulsante in alto da sinistra, scegliendo in sequenza: RS 232, la porta seriale del PC collegata al punto A1, 115200 Baud e quindi premendo il pulsante Connect. A questo punto il FLIP instaura la comunicazione con il Boot Loader del microcontrollore e compila una serie di dati nella sua finestra principale.

Se la comunicazione non si instaura e dopo circa 20 secondi appare la finestra *Timeout Error*, potete abbassare la velocità di comunicazione da 115200 a 19200 Baud e riconsegnare i punti precedenti.

![RS232](image)

FIGURA 20: FINESTRA SETTAGGIO FLIP (2 DI 3)

C10) Caricare il file da programmare nella FLASH (ovvero quello con estensione .HEX copiato al punto C4) premendo il terzo pulsante da destra e selezionando il file tramite la finestra di dialogo rappresentata. Nel riquadro *FLASH Buffer Information* appaiono varie informazioni sull'operazione appena effettuata; in particolare la voce *HEX File* deve riportare il nome del file.
C11) Spuntare tutte le caselle del riquadro Operations Flow come in figura 21, in modo che il FLIP esegua sequenzialmente le quattro operazioni di: cancellazione, verifica di cancellazione, programmazione e verifica di programmazione.

C12) A questo punto assicurarsi che la finestra principale del FLIP si presenti come in figura 21, in particolare per le voci \textit{Size:}, \textit{X2}; \textit{Device SSB} e \textit{BSB / EB / SBV}.

C13) Premere il pulsante \textit{Run} nella finestra principale per avviare le operazioni ISP impostate, che programmeranno la FLASH interna con il codice caricato.

C14) Attendere la fine delle operazioni ISP. Nel riquadro in basso a sinistra si può vedere l'operazione in corso affiancata da una barra a scorrimento che indica il suo stato di avanzamento; le caselle di spunto diventano rosse durante l'esecuzione e poi verdi man mano che la rispettiva operazione viene completata. Si deve quindi aspettare che la casella \textit{Verify} diventi verde.

C15) A questo punto la FLASH è programmata ed il FLIP può essere chiuso.

C16) Riprovare il programma demo appena riprogrammato ripetendo i passi B1÷B6.
Al fine di velocizzare le operazioni sopra descritte, che devono essere ripetute ad ogni prova del programma applicativo, si può conveniente usare la modalità BatchISP del FLIP corredata di un adeguato file di comando, con le seguenti istruzioni:

-device AT89C51CC03
-hardware RS232
-port COM1
-baudrate 115200
-operation memory FLASH
erase F
loadbuffer "<file utente>.HEX"
addrange 0x0000 0xFFFF
program
verify

Per ulteriori informazioni sulla programmazione ISP e sull'uso del programma FLIP si prega di consultare la specifica documentazione rilasciata dalla ATMEL.

<table>
<thead>
<tr>
<th>Ambiente di sviluppo</th>
<th>Linguaggio</th>
<th>Sorgente</th>
<th>Progetto</th>
<th>Definizioni</th>
<th>Ambiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASCOM 8051</td>
<td>BASIC</td>
<td>.BAS</td>
<td>-</td>
<td>.DAT</td>
<td>-</td>
</tr>
<tr>
<td>µC/51</td>
<td>C</td>
<td>.C</td>
<td>.MAK</td>
<td>.H</td>
<td>.WSP</td>
</tr>
<tr>
<td>LADDER WORK</td>
<td>LADDER</td>
<td>.PJN</td>
<td>.PJN</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

D1) CREAZIONE DEL CODICE ESEGUIBILE DEL PROGRAMMA DEMO

D1) Installare l'ambiente di sviluppo scelto per realizzare programma applicativo, sul disco rigido del PC. Come descritto nel capitolo AMBIENTI DI SVILUPPO sono disponibili diversi pacchetti in modo da soddisfare le richieste di ogni utente, ma qui si presentano quelli più diffusi, ovvero il BASCOM 8051, µC/51 e LADDER WORK. Per informazioni dettagliate su questi prodotti si faccia riferimento al relativo manuale d'uso oppure all'aiuto in linea.

D2) Accertarsi che al punto C4 dal CD grifo® siano stati copiati tutti i file e non solo l'eseguibile .HEX, del demo. In dettaglio nella cartella di lavoro devono essere presenti il/i file sorgenti, i file di progetto, i file di definizione provvisti delle seguenti estensioni a seconda dell'ambiente di sviluppo usato:

D3) Ricompilare il sorgente usando l'ambiente di sviluppo scelto, in modo da ottenere il file .HEX identico a quello ricevuto e già usato nel punto C. Questa operazione si differenzia notevolmente a seconda dell'ambiente di sviluppo utilizzato, pertanto di seguito vengono esposti i passi dettagliati opportunamente suddivisi:

D3A) RICOMPILAZIONE CON BASCOM 8051

D3A1) Copiare il file di definizione .DAT descritto al punto D2 nella cartella di installazione del BASCOM 8051: \MCS Electronics\BASCOM8051\
D3A2) Eseguire il **BASCOM 8051** ed una volta entri nella IDE, caricare il file sorgente (con estensione .BAS), tramite il menu *File | Open*:

![Caricamento sorgente con BASCOM 8051](image)

FIGURA 22: CARICAMENTO SORGENTE CON BASCOM 8051

D3A3) Aprire la finestra di configurazione del compilatore **BASCOM 8051**, tramite il comando *Option|Compiler|Misc*, effettuare le impostazioni riportate nella seguente figura ed al termine confermare con il pulsante *Ok*.

Si ricorda che l'impostazione del campo *Register file* deve coincidere con il microprocessore usato ed è possibile solo se il file di definizione è stato correttamente copiato, come descritto al punto D3A1.

![Configurazione compilatore BASCOM 8051](image)

FIGURA 23: CONFIGURAZIONE COMPILATORE BASCOM 8051

D3A4) Ricompilare il sorgente del programma demo con una semplice pressione del tasto rapido *F7*, oppure selezionare il comando *Program | Compile*, e verificare che non avvengano errori. In questo modo si deve ottenere il file .HEX, identico a quello presente sul disco **grifo** e già usato nei punti C.
La compilazione impiega un tempo che dipende dal PC usato; in ogni caso si deve attendere il completamento di entrambe le passate opportunamente segnalate da una finestra di stato che compare durante la stessa compilazione, e verificare che al termine non siano riportati errori nella parte bassa dell’IDE. In altre parole al termine si deve presentare una situazione simile a quella riportata nella seguente figura.

FIGURA 24: Compilazione con BASCOM 8051

D3B) RICOMPILAZIONE CON µC/51

D3B1) Il pacchetto di sviluppo µC/51 è provvisto di due ambienti distinti. Il primo, coincide con l’IDE JFE editor ovvero un programma che comprende un editor, un rappresentatore di dipendenze ad albero ed un esecutore di programmi esterni. Questo può essere configurato con appositi programmi in modo da effettuare tutte le operazioni necessarie allo sviluppo del programma applicativo.

Il secondo comprende un editor denominato uEdit con cui si può esaminare e modificare il sorgente ed un gestore di progetti, denominato UmShell, che può compilare il sorgente ed ottenere quindi il codice eseguibile per la **GMM ACB Zero**.

I seguenti passi illustrano le operazioni basilari per entrambi gli ambienti del µC/51 mentre per informazioni dettagliate sull'uso dei vari programmi descritti si rimanda alla documentazione fornita con il pacchetto.
D3B2) Usando il JFE editor si deve prima lanciare l'omonimo programma dal menù di avvio di Windows e quindi aprire il file di ambiente relativo al demo, con estensione .WSP, tramite il menù File | Open. Workspace. Qualora questo file non sia disponibile l'utente può generararlo, oppure usare gli altri programmi uEdit e UmShell descritti dopo.

Figura 25: Caricamento ambiente con µC/51 e JFE

A questo punto tutto è già predisposto e per creare il codice eseguibile del programma ed è sufficiente premere il pulsante RE-MAKE sulla riga dei pulsanti del JFE, verificando che non avvengano errori, come illustrato nella seguente figura.

Figura 26: Compilazione con µC/51 e JFE
Al termine della compilazione si ottiene il file .HEX, identico a quello presente sul disco grifo® e già usato nei punti C.

D3B3) Usando invece il uEdit e l'UmShell si deve innanzitutto lanciare il primo programma dal menù di avvio di Windows e quindi aprire il file sorgente del demo, con estensione .C, tramite il menu File | Open:

FIGURA 27: CARICAMENTO SORGENTE CON µC/51 ED uEDIT

D3B4) Continuando ad usare il uEdit e l'UmShell si deve poi lanciare il secondo programma dal menù di avvio di Windows e quindi aprire il file di progetto del demo, con estensione .MAK, tramite il menu File | Open:

FIGURA 28: CARICAMENTO PROGETTO CON µC/51 ED UmShell

Il file di progetto definisce tutte le modalità di compilazione del sorgente e stabilisce quindi le caratteristiche del programma eseguibile generato, in termini di allocazione codice, allocazione area dati, ottimizzazioni, gestione della console, ecc.

D3B5) Usando sempre il uEdit e l'UmShell, a questo punto si deve compilare il sorgente premendo il secondo pulsante da destra dell'UmShell, oppure usando il suo menù Make | Remake Target. Durante la compilazione si deve verificare che non avvengano
errori ed al termine si ottiene il file .HEX, identico a quello presente sul disco grifo® e già usato nei punti C.
La compilazione impiega un tempo che dipende dal PC usato, in ogni caso si deve attendere il completamento di tutte le fasi opportunamente segnalate nella finestra dell’UmShell in modo da ottenere una condizione simile a quella riportata nella seguente figura.

FIGURA 29: COMPILAZIONE CON µC/51 ED UmShell

D3C) RICOMPILAZIONE CON LADDER WORK

D3C1) Una volta lanciato l’IDE del LADDER WORK, dal menù di avvio di Windows, aprire lo schematico del programma demo (con estensione .PJN) tramite il menu File | Open:

FIGURA 30: CARICAMENTO SCHEMATICO CON LADDER WORK
D3C2) Assicurarsi che il profilo scelto per la compilazione sia quello relativo al Mini Modulo GMM ACB Zero:

![Configurazione compilatore con LADDER WORK](image1)

Figura 31: Configurazione compilatore con LADDER WORK

D3C3) Compilare il sorgente premendo il primo pulsante da destra:

![Compilazione con LADDER WORK](image2)

Figura 32: Compilazione con LADDER WORK

D3C4) Durante la compilazione non si devono presentare errori come nella seguente figura:

![Risultato compilazione con LADDER WORK](image3)

Figura 33: Risultato compilazione con LADDER WORK
La compilazione impiega un tempo che dipende dal PC usato, in ogni caso si deve attendere il completamento di tutte le fasi opportunamente segnalate nella finestra in basso dell'IDE. Al termine si ottiene il file .HEX, identico a quello presente sul disco grifo® e già usato nei punti C.

D4) Rieffettuare il salvataggio e la prova del file .HEX ottenuto dalla compilazione, ripetendo i punti C5÷C16.

D5) Se durante l'esecuzione dei passi sopra elencati si presenta un problema od un'anomalia si consiglia all'utente di rileggere e ripetere i passi con attenzione e qualora il malfunzionamento persista, di contattare direttamente la grifo®.

In caso di esecuzione corretta di tutte le fasi sopra descritte l'utente ha realizzato e salvato il suo primo programma applicativo coincidente con il demo del Mini Modulo GMM ACB Zero.

A questo punto è possibile modificare il sorgente del programma demo in modo da soddisfare le richieste dell'applicazione da realizzare e ricompilarlo, riprogrammarlo e riprovarlo (passi da B1 a D4) in modo ciclico, fino a quando si ottiene la funzionalità desiderata.

In merito alle impostazioni del FLIP si ricorda che queste possono essere effettuate solo la prima volta infatti lo stesso programma mantiene gli ultimi settaggi utilizzati; in alternativa si può usare la modalità batch, che oltretutto può essere anche integrata nell'ambiente di sviluppo, in modo da velocizzare la fase di programmazione e prova del programma.

Raggiunto questo obiettivo si può eliminare il PC di sviluppo, ovvero:

E) PREPARAZIONE DEFINITIVA DELL'APPLICAZIONE

E1) Impostare modalità RUN (DSW1.1=OFF) e scollegare il PC di sviluppo, se non richiesto dall'applicazione.
FIGURA 34: ESEMPI DI CONNESSIONE
AMBIENTI DI SVILUPPO

La scheda usufruisce di una ricca serie di strutture software che consentono di utilizzarne al meglio le caratteristiche e di sviluppare le applicazioni necessarie in un tempo veramente corto. In generale il Mini Modulo può sfruttare tutte le risorse software per il microprocessore montato, ovvero i numerosi pacchetti ideati per la famiglia 51, sia ad alto che a basso livello. Tutti gli ambienti di sviluppo software forniti dalla grifo® sono sempre accompagnati da esempi che illustrano come gestire le sezioni della scheda, da una completa documentazione d'uso e da abbondanti commenti. Tra questi ricordiamo:

HI TECH C 51: Cross compilatore per file sorgenti scritti in linguaggio C. E’ un potente pacchetto software che tramite un comodo IDE permette di utilizzare un editor, un compilatore C (floating point), un assemblatore, un ottimizzatore, un linker e un remote debugger. Sono inoltre inclusi i sorgenti delle librerie.

SYS51CW: Cross compilatore per programmi scritti in C, disponibile in ambiente WINDOWS con un comodo IDE che mette a disposizione: editor, compilatore C, assemblatore, ottimizzatore, linker, librerie ed un debugger simbolico remoto.

SYS51PW: Cross compilatore per programmi scritti in PASCAL, disponibile in ambiente WINDOWS con un comodo IDE che mette a disposizione: editor, compilatore PASCAL, assemblatore, ottimizzatore, linker, librerie ed un debugger simbolico remoto.

DDS MICRO C 51: E’ un comodo pacchetto software, a basso costo, che tramite un completo IDE permette di utilizzare un editor, un compilatore C (integer), un assemblatore, un linker e un remote debugger abbinato ad un monitor. Sono inclusi i sorgenti delle librerie ed una serie di utility.

BASCOM 8051: Cross compilatore a basso costo per files sorgenti scritti in BASIC, disponibile in ambiente WINDOWS con un comodo IDE che mette a disposizione un editor, il compilatore ed un simulatore molto potente per il debugger del sorgente. Comprende molti modelli di memoria, svariati tipi di dati e numerose istruzioni dedicate alle tipiche risorse hardware usate nell'automazione industriale.

µC/51: E’ un comodo pacchetto software, a basso costo, che tramite un completo IDE permette di utilizzare un editor, un compilatore ANSI C, un assemblatore, un linker e un debugger remoto configurabile da utente, a livello sorgente. Sono inclusi i sorgenti delle librerie fondamental e del debugger remoto, alcuni esempi di utilizzo e vari programmi di utilità.

LADDER WORK: E’ un semplice sistema per creare programmi di automazione con la conosciuta e diffusa logica a contatti. Include un editor grafico che consente di posizionare e collegare i componenti hardware della scheda (input, output, contatori, A/D, ecc) come su uno schema elettrico e di definir le proprietà, un efficiente compilatore che converge lo schema in codice eseguibile ed utilità per lo scaricamento di tale codice verso la scheda. Il tutto integrato in un comodo IDE per Windows. Viene fornito sotto forma di CD che comprende esempi e manuale d'uso e relativa chiave di abilitazione.
DESCRIZIONE SOFTWARE PERIFERICHE DI BORDO

Nei paragrafi successivi si usano le indicazioni \(D0+D7 \) e \(.0+7 \) per fare riferimento ai bits della combinazione utilizzata nelle operazioni di I/O.

INGRESSI DI CONFIGURAZIONE

Tre vie del Dip switch DSW1 montato a bordo della GMM ACB Zero possono essere acquisite via software, effettuando una semplice operazione di input dai relativi bit del Port 2:

\[
\begin{align*}
DSW1.6 & \rightarrow P2.7 \\
DSW1.7 & \rightarrow P2.6 \\
DSW1.8 & \rightarrow P2.5
\end{align*}
\]

L’acquisizione è in logica negata, ovvero il dip in ON fornisce lo stato logico 0 mentre il dip in OFF fornisce lo stato logico 1. Durante lo sviluppo del programma applicativo l’utente deve considerare che l’uso dei Dip switch come ingressi di configurazione preclude l’uso dei segnali collegati come linee di I/O utente o per i LEDs di segnalazione. Quando queste funzionalità devono essere usate i DSW1.6-8 devono obbligatoriamente essere in posizione OFF.
Inoltre lo switch DSW1.1 svolge la funzione di selettore delle modalità RUN o DEBUG, ovvero se al momento dell’accensione o dopo un reset è ON viene eseguito il Boot Loader, viceversa se lo switch è OFF viene eseguito il programma utente a partire dall’indirizzo 0 dell’area codice, allocata nella FLASH interna.

LEDS DI SEGNALAZIONE

I LEDs LD1 ed LD2 possono essere pilotati dal software ed il loro stato può essere definito mediante semplici operazioni sui relativi bit del Port 2:

\[
\begin{align*}
LD1 \text{ (verde)} & \rightarrow P2.6 \\
LD2 \text{ (rosso)} & \rightarrow P2.7
\end{align*}
\]

Il pilotaggio è in logica negata, ovvero il LED si accende ponendo a 0 il corrispondente bit del Port 2 mentre si spegne ponendo ad 1 lo stesso bit.
Tutti i segnali del port P2 vengono mantenuti alti in fase di reset od accensione, di conseguenza durante ed in seguito ad una di queste fasi, i LEDs sono disattivi.
SEGNALI MULTIFUNZIONE

Numerosi segnali presenti su CN1 possono essere utilizzati dall'utente con diverse funzionalità selezionabili via software dal programma applicativo sviluppato. Questa specializzazione dei segnali multiplexati avviene tramite appositi settaggi di registri interni al microcontrollore, come descritto nella documentazione del componente. Ad esempio i piedini 26÷33 possono operare come ingressi analogici (ANn) oppure come I/O digitali (P1.n) a seconda del settaggio del registro ADCF; quando settati come I/O possono poi operare come segnali del Timer 2 o del PCA, attivando opportunamente queste due periferiche.

ACCESSO ALLE MEMORIE

Sul Mini Modulo GMM ACB Zero sono disponibili diversi tipi di memorie che possono essere gestite dal programma applicativo dell'utente, come indicato di seguito:

<table>
<thead>
<tr>
<th>Memoria</th>
<th>Allocazione</th>
<th>Accesso</th>
<th>Gestione</th>
</tr>
</thead>
<tbody>
<tr>
<td>64K bytes di FLASH</td>
<td>Area codice</td>
<td>R</td>
<td>Istruzioni lettura area codice</td>
</tr>
<tr>
<td>256 bytes di IRAM</td>
<td>Area dati interna</td>
<td>R/W</td>
<td>Chiamate a funzioni del Boot Loader</td>
</tr>
<tr>
<td>2K bytes di ERAM</td>
<td>Area dati esterna</td>
<td>R/W</td>
<td>Istruzioni per accesso a RAM esterna</td>
</tr>
<tr>
<td>2K bytes di EEPROM</td>
<td>Area dedicata</td>
<td>R/W</td>
<td>Tramite appositi registri di gestione (SFR)</td>
</tr>
</tbody>
</table>

mentre esternamente possono essere collegate le seguenti memorie, sul BUS di espansione:

64K bytes di SRAM, FLASH, EEPROM Area dati R/W Istruzioni per accesso a RAM esterna

Le modalità di indirizzamento e le istruzioni di accesso alle memorie del microcontrollore vengono spiegate nei manuali del componente, pertanto si prega di consultare questi ultimi o l'APPENDICE A di questo manuale. Questa conoscenza diventa necessaria quando il programma dell'utente é sviluppato in assembly, mentre utilizzando un ambiente di sviluppo ad alto livello il tutto avviene automaticamente e comodamente, ad esempio aggiungendo degli identificatori nella dichiarazione delle variabili, a seconda di dove devono essere allocate.

E' importante ricordare che gli ultimi 8 byte della EEPROM di bordo sono riservati per dati di calibrazione e non devono essere modificati. Sia il programma applicativo utente, che la gestione della EEPROM in ISP, devono salvaguardare questi bytes pena il malfunzionamento del Mini Modulo.
E' riportato di seguito, un elenco di manuali e note tecniche, a cui l'utente può fare riferimento per avere maggiori chiarimenti, sui vari componenti montati a bordo del Mini Modulo GMM ACB Zero.

Manuale ATMEL: Data sheet AT89C51CC03
Manuale MAXIM: New Releases Data Book - Volume IV
Manuale MAXIM: New Releases Data Book - Volume V
Documentazione tecnica MAXIM: True RS 232 Transceivers
Manuale PHILIPS: 80C51 - Based 8-Bit Microcontrollers
Manuale PHILIPS: Application notes and development tools for 80C51 microcontrollers

Per reperire questi manuali fare riferimento alle case produttrici ed ai relativi distributori locali. In alternativa si possono ricercare le medesime informazioni o gli eventuali aggiornamenti ai siti internet delle case elencate.
Molti manuali in formato elettronico sono reperibili anche presso il nostro archivio di documentazione tecnica, come indicato in APPENDICE A.
APPENDICE A: DESCRIZIONE COMPONENTI DI BORDO

La grifo® fornisce un servizio di documentazione tecnica totalmente gratuito attraverso il proprio sito internet da cui possono essere scaricate le documentazioni tecniche complete dei componenti usati a bordo scheda. Si rimanda quindi l'utente a tali manuali scaricabili dalla pagina "Servizio documentazione Tecnica" di cui in questo capitolo vengono riportate solo le prime pagine.

AT89C51CC03

Features
- 80C51 Core Architecture
- 256 Bytes of On-chip RAM
- 2048 Bytes of On-chip ERAM
- 64K Bytes of On-chip Flash Memory
 - Data Retention: 10 Years at 85°C
 - Read/Write Cycle: 100K
- 2K Bytes of On-chip Flash for Bootloader
- 2K Bytes of On-chip EEPROM
 - Read/Write Cycle: 100K
- 14-sources 4-level Interrupts
- Three 16-bit Timers/Counters
- Full Duplex UART Compatible 80C51
- Maximum Crystal Frequency 40 MHz
 - In X2 Mode, 20 MHz (CPU Core, 20 MHz)
- Five Ports: 32 + 4 Digital I/O Lines
- Five-channel 16-bit PCA with
 - PWM (8-bit)
 - High-speed Output
 - Timer and Edge Capture
- Double Data Pointer
- 21-bit WatchDog Timer (7 Programmable Bits)
- A 10-bit Resolution Analog to Digital Converter (ADC) with 8 Multiplexed Inputs
- SPI Interface, (PLCC52, VPFP64 and CABGA 64 packages only)
- Full CAN Controller
 - Fully Compliant with CAN Rev 2.0A and 2.0B
 - Optimized Structure for Communication Management (Via SFR)
 - 15 Independent Message Objects
 - Each Message Object Programmable on Transmission or Reception
 - Individual Tag and Mask Filters up to 29-bit Identifier/Channel
 - 8-byte Cyclic Data Register (FIFO)/Message Object
 - 16-bit Status and Control Register/Message Object
 - 16-bit Time-Stamping Register/Message Object
 - CAN Specification 2.0 Part A or 2.0 Part B Programmable for Each Message Object
 - Access to Message Object Control and Data Registers Via SFR
 - Programmable Reception Buffer Length Up To 15 Message Objects
 - Priority Management of Reception of Hits on Several Message Objects at the Same Time (Basic CAN Feature)
 - Priority Management for Transmission
 - Message Object Overrun Interrupt
 - Supports
 - Time Triggered Communication
 - Autobaud and Listening Mode
 - Programmable Automatic Reply Mode
 - 1-Mbit/s Maximum Transfer Rate at 8 MHz (¹) Crystal Frequency in X2 Mode
 - Readable Error Counters
 - Programmable Link to On-chip Timer for Time Stamping and Network Synchronization
 - Independent Baud Rate Prescaler
 - Data, Remote, Error and Overload Frame Handling
- On-chip Emulation Logic (Enhanced Hook System)
- Power Saving Modes
 - Idle Mode
 - Power-down Mode

¹. At BRP = 1 sampling point will be fixed.
• Power Supply: 3 volts to 5.5 volts
• Temperature Range: Industrial (-40° to +85°C)
• Packages: VQFP44, PLCC44, VQFP64, PLCC52, CA-BGA64

Description

The AT89C51CC03 is the third member of the CANary™ family of 8-bit microcontrollers dedicated to CAN network applications.

In X2 mode a maximum external clock rate of 20 MHz reaches a 300 ns cycle time.

Besides the full CAN controller AT89C51CC03 provides 64K Bytes of Flash memory including In-System Programming (ISP), 2K Bytes Boot Flash Memory, 2K Bytes EEPROM and 2048 byte ERAM.

Primary attention is paid to the reduction of the electro-magnetic emission of AT89C51CC03.

Block Diagram

Notes: 1. 8 analog Inputs/8 Digital I/O
2. 5-Bit I/O Port
APPENDICE B: SCHEMA ELETTRICO GMM TST 2

Title: GMM TST 2
Date: 17/11/2002
Note:

D.S.: 111003
Page 1 of 3

GMM ACB Zero Rel. 3.00 Pagina B-1
APPENDICE C: CONFIG. BASE, OPZIONI, ACCESSORI

In corrispondenza di un primo acquisto o di una eventuale riparazione, la **GMM ACB Zero** viene fornita nella sua configurazione base. Alcune caratteristiche di tale configurazione sono state descritte più volte in questo manuale (usando anche il nome configurazione di default) ed in questa appendice vengono riassunte, opportunamente raggruppate nella seguente tabella.

<table>
<thead>
<tr>
<th>DISPOSITIVO</th>
<th>CONFIG.</th>
<th>FUNZIONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSW1.1</td>
<td>OFF</td>
<td>Non collega la linea /PSEN del microcontrollore, selezionando la modalità RUN: a seguito di ogni accensione e/o reset del Mini Modulo, parte il programma memorizzato nella FLASH del microcontrollore.</td>
</tr>
<tr>
<td>DSW1.2</td>
<td>ON</td>
<td>Collegano i segnali di trasmissione e ricezione, sui piedini di CN1, al driver seriale RS 232.</td>
</tr>
<tr>
<td>DSW1.3</td>
<td>ON</td>
<td>Collegano i segnali di trasmissione e ricezione sui piedini di CN1, al microcontrollore, consentendo il collegamento al driver seriale RS 232.</td>
</tr>
<tr>
<td>DSW1.4</td>
<td>OFF</td>
<td>Non collegano i segnali di trasmissione e ricezione sui piedini di CN1, al microcontrollore, consentendo il collegamento al driver seriale RS 232.</td>
</tr>
<tr>
<td>DSW1.5</td>
<td>OFF</td>
<td>Non collegano i segnali di trasmissione e ricezione sui piedini di CN1, al microcontrollore, consentendo il collegamento al driver seriale RS 232.</td>
</tr>
<tr>
<td>DSW1.6</td>
<td>OFF</td>
<td>Non collega il pin 6 del Mini Modulo lasciando il segnale P2.7, ed il LED LD2, gestibili da utente.</td>
</tr>
<tr>
<td>DSW1.7</td>
<td>OFF</td>
<td>Non collega il pin 5 del Mini Modulo lasciando il segnale P2.6, ed il LED LD1, gestibili da utente.</td>
</tr>
<tr>
<td>DSW1.8</td>
<td>OFF</td>
<td>Non collega il pin 11 del Mini Modulo lasciando il segnale P2.5, gestibile da utente.</td>
</tr>
<tr>
<td>FLASH per Boot Loader</td>
<td>Boot Loader</td>
<td>Quando è selezionata la modalità DEBUG (DSW1.1=OFF) consente di comunicare con un PC che esegue il FLIP per gestire la programmazione ISP delle memorie FLASH ed EEPROM di bordo.</td>
</tr>
<tr>
<td>FLASH interna per utente</td>
<td>Programma demo</td>
<td>Effettua il lampeggio dei LED di segnalazione ed interagisce con una console sulla seriale RS 232 impostata a 19200 Baud, 8 bit x chr, Nessuna parità, 1 Stop bit, Nessun handshake.</td>
</tr>
<tr>
<td>EEPROM interna per utente</td>
<td>Dati calibrazione</td>
<td>Gli ultimi 8 byte di questa memoria sono riservati per dati di calibrazione e non devono essere modificati. Sia il programma applicativo utente che la gestione ISP devono salvaguardare questi bytes, pena il malfunzionamento del Mini Modulo.</td>
</tr>
</tbody>
</table>

FIGURA C1: TABELLA CONFIGURAZIONE BASE

La precedente tabella può essere ulteriormente ridotta indicando che il prodotto viene fornito calibrato, con tutte le linee di I/O sullo zoccolo libere e pronto per la comunicazione in RS 232, con un protocollo fisico 19200, 8, No, 1.

La **GMM ACB Zero** non ha opzioni che possono essere aggiunte in fase di ordine del modulo. Come descritto nel capitolo SCHEDE DI SUPPORTO ci sono altre schede che sono in grado di alloggiare il Mini Modulo e di renderle immediatamente utilizzabili tutte le sue risorse.
APPENDICE D: INDICE ANALITICO

Simboli
.HEX 31, 33, 34, 37, 38, 40
/RES 17
μC/51 33, 35, 42

A
A/D converter 6, 12, 13, 17, 20
Accensione 17
Accesso 44
Accessori C-1
Alimentazione 13, 14, 17
Allocazione memorie 44
Ambienti di sviluppo 42
Area codice 17
Area dati 17, 23, 44
Assistenza 1
AT89C51CC03 12, 31, A-1
Attributi 30

B
BASCOM 8051 33, 35, 42
Basso assorbimento 14
BatchISP 33
Baud rate 29, 31
Bibliografia 45
Bit di Dati 29
Bit di Stop 29
Bit per secondo 29
Bit x chr 29
Boot Loader 22, 43
BUS espansione 9, 17, 22, 44

C
Calibrazione 44, C-1
CAN 10, 16, 23
Caratteristiche elettriche 13
Caratteristiche fisiche 12
Caratteristiche generali 12
Caratteristiche tecniche 12
Cariche elettrostatiche 1
Cartella di lavoro 29
Cattura 17
Ciclo macchina 8
Clock 8, 12, 17
Come iniziare 28
Comparazione 17
Comunicazione seriale 5, 18, 20, 28
COMx 28, 29
Configurazione base 19, C-1
Configurazione scheda 9, 18
Connessioni 15
Connettori 12, 15
 CN1 16
Consumi 13, 14
Contenitore 1
Controllo alimentazione 17
Controllo di flusso 29
Corrente 13
Creazione codice eseguibile 33

D
DDS MICRO C 51 42
DEBUG 18, 22, 30, 43
Descrizione software 43
Dimensioni 12
Dip switch 9, 15, 16, 18
Display 26
Disposizione 15
Disturbi 14
Documentazione 45, A-1
Driver 23
DSW1 16, 18, 21, 22, C-1

E
EEPROM 8, 12, 22, 44, C-1
EEPROM riservata 44
Emulazione terminale 29
EPROM 22
ERAM 8, 12, 44
Esempi di connessione 41

F
File di ambiente 36
File di definizione 33
File di progetto 37
File forniti 33
File sorgente 34, 37
FLASH 8, 12, 22, 32, 44, C-1
FLIP 29, 32
Frequenza clock 12
G
Garanzia 1
GMB HR168 24, 41
GMM TST 26
GMM TST 2 26, 41, B-1

H
Handshake 29
HI TECH C 51 42
HYPERTERMINAL 29

I
I/O digitali 6, 16, 44
I2C BUS 6, 16, 20
Idle 14
Impedenza 20, 23
Impedenza ingressi analogici: 13
Informazioni generali 4
Ingressi optoisolati 24
Ingressi analogici 6, 13, 17, 20, 44
Ingressi configurazione 18, 43
Installazione 14
Interfacce operatore 41
Interfacciamento 20
Interrupts 16, 19
IRAM 8, 12, 44
ISP 22, 29, 32

J
JFE 36

K
K51-AVR 6, 41

L
LADDER WORK 33, 38, 39, 42
Latch 22
LEDs 9, 14, 15, 16, 18, 43

M
Manuali 45
Massa 17
Memorie esterne 8, 22, 44
Memorie interne 8, 12, 44, C-1
Microcontrollore 12, 31, A-1
Modo operativo 22
MSI 01 5, 41

N
Normative 1

O
Opzioni C-1

P
Parità 29
Passo 12, 16
PC 41
PC di sviluppo 28
PCA 17, 44
Periferica esterne 22
Periferiche di bordo 43
Peso 12
Piante componenti 11
PLC 41
Port 6, 16, 43
Power down 14
Predisposizione collegamenti 28
Preparazione definitiva 40
Primo uso 28
Priorità 19
Programmazione FLASH 29
Programmi demo 29, 30, C-1
Protezione RS 232 13
Protocollo elettrico 20
Protocollo fisico 20, C-1
Prova programma demo 29
PWM 17, 20

Q
QTP 6, 41
Quarzo 8

R
Range ingressi analogici 13
Relè 24
Reset 17
Resistenze pull up 20
Risoluzione A/D 12
Risorse della scheda 12
RS 232 5, 13, 20, 21, 28
RUN 18, 22, 29, 40, 43, C-1

S
Scariche 20
Schede di supporto 24
Schema a blocchi 7
Schematico 38
Schemi elettrici 23, B-1
Segnalazioni visive 14
Segnali di controllo 17, 22
Segnali multifunzione 16, 44
Seriale asincrona 5, 20
Seriale RS 232 5, 16, 18, 21, 28, C-1
Seriale TTL 5, 16, 18, 21
Settori applicativi 10
Sicurezza 1, 8, 17
Soglia alimentazione 13
SRAM 22, 44
SYS51CW 42
SYS51PW 42

T
Tabella esempi 30
Tastiera 26
Temperatura 12
Tempo conversione A/D 12
Tempo intervento Watch Dog 12
Tempo reset 12
Tensione alimentazione 13
Tensione riferimento 13, 17
Timer 16
Trigger 16
TTL 5, 6, 20, 21

U
Umidità 12
Utilizzo 10

V
Velocità 8
Versione 3
Vista complessiva 9
Vista dall'alto 13
Vref 13, 17, 20
W
Watch Dog 8, 12, 17

Z
Zoccolo 16