Libreria QTP 12
Libreria per Quick Terminal Panel 12 tasti

MANUALE UTENTE

Via dell'Artigiano, 8/6
40016 San Giorgio di Piano
(Bologna) ITALY
E-mail: grifo@grifo.it
http://www.grifo.it http://www.grifo.com
Tel. +39 051 892.052 (r.a.) FAX: +39 051 893.661

grifo®
ITALIAN TECHNOLOGY

QTP 12.LIB Rel. 3.50 Edizione 24 Luglio 2006

© abaco®. GPC®, grifo®, sono marchi registrati della ditta grifo®
La libreria QTP 12 coincide con un firmware appositamente sviluppato per consentire all'utente di sviluppare un **Proprio Programma Applicativo** in modo comodo, veloce ed efficace. Con questa libreria la QTP 12 opera come un potente **Controllore Completo di Interfaccia Operatore** che può quindi funzionare sia autonomamente che abbinato ad altri sistemi. Una ricca e completa serie di **comandi**, che possono essere chiamati direttamente con i relativi **Parametri** e **Risultati**, consentono ad ogni utente di realizzare il programma applicativo che soddisfi al meglio le sue esigenze, con un **Tempo di Sviluppo** veramente **Ridotto**. Tali comandi soddisfano le normali richieste dell'ambiente industriale e sono il frutto di una esperienza decennale in questo settore.

La QTP 12.LIB non è quindi un prodotto finito pronto per essere installato ma deve essere prima **Specializzato** dall'utente. Questa specializzazione può essere effettuata con comodi ed economici **Ambienti di Sviluppo**, sia ad alto che a basso livello, e rendono la QTP un prodotto veramente flessibile e versatile. Infatti il programma applicativo dell'utente che la specializza consente di risolvere ogni problematica anche di alta complessità, ed allo stesso tempo consente di realizzare automazioni diverse, usando lo stesso hardware.

La maggioranza degli ambienti di sviluppo disponibili per la famiglia I51 possono usare la libreria QTP 12 e mettono a disposizione comode modalità di **Debug** del programma applicativo, riducendo ancora i tempi complessivi di preparazione. Tra questi si possono ricordare: **Assemblatori**; compilatori **PASCAL** (SYS51PW); compilatori C (HTC-51, SYS51CW, μC/51); programmazione a **Contatti** (LadderWORK); compilatori **BASIC** (BASCOM-8051); ecc.
VINCOLI SULLA DOCUMENTAZIONE

Nessuna parte del presente manuale può essere riprodotta, trasmessa, trascritta, memorizzata in un archivio o tradotta in altre lingue, con qualunque forma o mezzo, sia esso elettronico, meccanico, magnetico ottico, chimico, manuale, senza il permesso scritto della grifo®.

IMPORTANTE

Tutte le informazioni contenute sul presente manuale sono state accuratamente verificate, ciononostante grifo® non si assume nessuna responsabilità per danni, diretti o indiretti, a cose e/o persone derivanti da errori, omissioni o dall’uso del presente manuale, del software o dell’hardware ad esso associato. grifo® altresì si riserva il diritto di modificare il contenuto e la veste di questo manuale senza alcun preavviso, con l’intento di offrire un prodotto sempre migliore, senza che questo rappresenti un obbligo per grifo®.

Per le informazioni specifiche dei componenti utilizzati sui nostri prodotti, l’utente deve fare riferimento agli specifici Data Book delle case costruttrici o delle seconde sorgenti.

LEGENDA SIMBOLI

Nel presente manuale possono comparire i seguenti simboli:

- !: Attenzione: Pericolo generico
- ⚡: Attenzione: Pericolo di alta tensione
- ♂: Attenzione: Dispositivo sensibile alle cariche elettrostatiche

MARCHI REGISTRATI

GPC®, grifo®: sono marchi registrati della grifo®.

Altre marche o nomi di prodotti sono marchi registrati dei rispettivi proprietari.
INDICE GENERALE

INTRODUZIONE ... 1

VERSIONE .. 3

INDICAZIONI GENERALI .. 4

MATERIALE NECESSARIO ... 6
 QTP 12 .. 6
 PERSONAL COMPUTER .. 6
 CAVO DI COMUNICAZIONE SERIALE ... 6
 SOFTWARE DI LAVORO ... 7
 PROGRAMMA SCrittURA FLASH EPROM: FLIP ... 7
 PROGRAMMA EMULAZIONE TERMINALE SERIALE ... 7
 AMBIENTE DI SVILUPPO PROGRAMMA APPLICATIVO ... 8

DESCRIZIONE LIBRERIA QTP 12 ... 9
 CONFIGURAZIONE QTP 12 .. 9
 BUFFER DI COMUNICAZIONE .. 9
 INTEGRAZIONE ED USO DELLA LIBRERIA .. 10
 RISORSE USATE DALLA LIBRERIA .. 14
 PROGRAMMAZIONE FLASH EPROM .. 16
 SETUP LOCALE ... 19
 MODALITÀ DI COMUNICAZIONE .. 20
 PROGRAMMI DEMO PER FIRMWARE DI LIBRERIA .. 20

UTILIZZO LIBRERIA QTP 12 CON μC/51 .. 22
 INTEGRAZIONE LIBRERIA NEL μC/51 .. 22
 FILES FORNITI CON μC/51 .. 23
 COME INIZARE CON LIBRERIA QTP 12 E μC/51 ... 24

BIBLIOGRAFIA ... 28

APPENDICE A: DESCRIZIONE COMPONENTI DI BORDO ... A-1
 MICROCONTROLLORE T89C5115 O T89C51CC02 ... A-1
 FAMIGLIA I51 .. A-2
 EEPROM OPZIONALE .. A-3
 SRAM+RTC PCF8583 .. A-4

APPENDICE B: INDICE ANALITICO .. B-1
INDICE DELLE FIGURE

FIGURA 1: ESEMPIO DI APPLICAZIONE CON QTP 12.LIB ... 5
FIGURA 2: COLLEGAMENTO SERIALE TRA QTP 12 E PC DI SVILUPPO .. 6
FIGURA 3: ORGANIZZAZIONE AREA CODICE CON LIBRERIA .. 11
FIGURA 4: USO RAM CON LIBRERIA ... 15
FIGURA 5: FINESTRA SETTAGGIO FLIP (1 DI 4) .. 16
FIGURA 6: FINESTRA SETTAGGIO FLIP (2 DI 4) .. 17
FIGURA 7: FINESTRA SETTAGGIO FLIP (3 DI 4) .. 17
FIGURA 8: FINESTRA SETTAGGIO FLIP (4 DI 4) .. 18
FIGURA 9: MODALITÀ SVILUPPO CON LIBRERIA .. 19
FIGURA 10: SCHEMA DI COMUNICAZIONE SERIALE ... 21
FIGURA 11: ESECUZIONE PROGRAMMA DEMO .. 25
FIGURA 12: PROGRAMMAZIONE FLASH EPROM .. 26
FIGURA 13: COMPILAZIONE PROGRAMMA .. 27
INTRODUZIONE

L’uso di questi dispositivi è rivolto - IN VIA ESCLUSIVA - a personale specializzato.

Questo prodotto non è un component di sicurezza così come definito dalla direttiva 98-37/CE.

ATTENTION
ESD PROTECTED AREA

I pin della/e scheda/e non sono dotati di protezione contro le cariche elettrostatiche. Visto che esiste un collegamento diretto tra numerosi pin delle schede ed i rispettivi pin dei componenti di bordo, e che quest'ultimi sono sensibili ai fenomeni ESD, il personale che maneggia la/e scheda/e è invitato a prendere tutte le precauzioni necessarie per evitare i possibili danni che potrebbero derivare dalle cariche elettrostatiche.

Scopo di questo manuale è la trasmissione delle informazioni necessarie all’uso competente e sicuro dei prodotti. Esse sono il frutto di un’elaborazione continua e sistematica di dati e prove tecniche registrate e validate dal Costruttore, in attuazione alle procedure interne di sicurezza e qualità dell’informazione.

I dati di seguito riportati sono destinati - IN VIA ESCLUSIVA - ad un utenza specializzata, in grado di interagire con i prodotti in condizioni di sicurezza per le persone, per la macchina e per l’ambiente, interpretando un’elementare diagnostica dei guasti e delle condizioni di funzionamento anomale e compiendo semplici operazioni di verifica funzionale, nel pieno rispetto delle norme di sicurezza e salute vigenti.

I dispositivi non possono essere utilizzati all'aperto. Si deve sempre provvedere ad inserire i moduli all'interno di un contenitore a norme di sicurezza che rispetti le vigenti normative. La protezione di questo contenitore non si deve limitare ai soli agenti atmosferici, bensì anche a quelli meccanici, elettrici, magnetici, ecc.
Per un corretto rapporto coi prodotti, è necessario garantire leggibilità e conservazione del manuale, anche per futuri riferimenti. In caso di deterioramento o più semplicemente per ragioni di approfondimento tecnico ed operativo, consultare direttamente l’Assistenza Tecnica autorizzata.

Al fine di non incontrare problemi nell’uso di tali dispositivi, è conveniente che l’utente - PRIMA DI COMINCIARE AD OPERARE - legga con attenzione tutte le informazioni contenute in questo manuale. In una seconda fase, per rintracciare più facilmente le informazioni necessarie, si può fare riferimento all’indice generale e all’indice analitico, posti rispettivamente all’inizio ed alla fine del manuale.

La grifo® non garantisce che questo software soddisfi le richieste dell’utente, che la produzione non cessi o sia priva di errori o che tutti gli eventuali problemi siano risolti. La grifo® non é inoltre responsabile dei problemi causati dalle modifiche dell'hardware dei calcolatori o dei sistemi operativi che si possono verificare nel tempo.

grifo® si riserva il diritto di apportare cambiamenti e/o miglioramenti ai prodotti descritti in questo manuale, ed allo stesso manuale, in qualunque momento senza darne notizia.

Il programma descritto in questo manuale é coperto da diritti d'autore. Nè il programma nè alcuna sua parte possono essere analizzati, disassemblati o modificati in alcun modo, con qualunque mezzo, per qualunque scopo.

Tutti i marchi registrati che compaiono nel presente manuale sono proprietà dei relativi costruttori.
Il presente manuale è riferito alla versione 2.1 della libreria QTP 12 ed alle eventuali versioni successive. La validità delle informazioni riportate è quindi subordinata al numero di versione in uso e l'utente deve sempre verificarne la giusta corrispondenza. L'utente può ottenere il numero di versione in diversi modi:

- dalla scheda, come indicato nel relativo manuale utente QTP 12;
- tramite un apposito comando previsto nella libreria;
- nel nome del file di libreria ricevuto;

Normalmente la libreria QTP 12 viene sempre fornita con l'ultima versione disponibile, ma in caso di specifiche esigenze l'utente può richiedere anche una versione diversa, specificandolo in fase di ordine.

In questo manuale sono presenti delle informazioni relative ad altri programmi che costituiscono una parte integrante della libreria: ognuno di questi ha il proprio numero di versione che, quando necessario, viene presentato in questo manuale. Infine anche l'hardware é dotato di una propria versione.

In caso di necessità di assistenza tecnica é di fondamentale importanza che l'utente, oltre alla descrizione del problema, fornisca i numeri di versione di tutti i prodotti in uso.

Come ogni prodotto, anche la libreria QTP 12 é soggetta a continue evoluzioni e modifiche, con l'intento di soddisfare nel modo migliore le nuove richieste dell'utenza e di eliminare gli eventuali problemi riscontrati. Di seguito viene quindi riportata una breve descrizione delle modifiche che il pacchetto ha subito, a seconda del numero di versione

Ver. 1.0 -> Versione di sviluppo e prove interne.

Ver. 1.3 -> Realizzata gestione per QTP 12/R84.

Ver. 2.1 -> Modificata per gestione della QTP 12 con stampato versione 160805.

Ogni eventuale aggiunta o miglioria che l'utente ritiene interessante, può essere proposta contattando direttamente la grifo®.
INDICAZIONI GENERALI

La libreria QTP 12 coincide con un firmware appositamente sviluppato per consentire all'utente di sviluppare un proprio programma applicativo in modo comodo, veloce ed efficace. Con questa libreria la QTP 12 opera come un potente controllore completo di interfaccia operatore che può quindi funzionare sia autonomamente che abbinato ad altri sistemi.

Una ricca e completa serie di comandi, che possono essere chiamati direttamente con i relativi parametri e risultati, consentono ad ogni utente di realizzare il programma applicativo che soddisfi al meglio le sue esigenze, con un tempo di sviluppo veramente ridotto. Tali comandi soddisfano le normali richieste dell'ambiente industriale e sono il frutto di una esperienza decennale in questo settore.

Si ricorda che in questo manuale si usa la sigla QTP 12.LIB per identificare la libreria in oggetto con un nome più conciso.

La QTP 12.LIB non è quindi un prodotto finito pronto per essere installato ma deve essere prima specializzato dall'utente. Questa specializzazione può essere effettuata con comodi ed economici ambienti di sviluppo, sia ad alto che a basso livello, e rendono la QTP un prodotto veramente flessibile e versatile. Infatti il programma applicativo dell'utente che la specializza consente di risolvere ogni problematica anche di alta complessità, ed allo stesso tempo consente di realizzare automazioni diverse, usando lo stesso hardware.

La maggioranza degli ambienti di sviluppo disponibili per la famiglia I51 possono usare la libreria QTP 12 e mettono a disposizione comode modalità di debug del programma applicativo, riducendo ancora i tempi complessivi di preparazione. Tra questi si possono ricordare: assemblatori; compilatori PASCAL (SYS51PW); compilatori C (HTC-51, SYS51CW, µC/51); programmazione a Contatti (LadderWORK); compilatori BASIC (BASCOM-8051); ecc.

Il presente manuale fornisce le specifiche d'uso relative alla sola libreria mentre tutte le altre informazioni su connettori, configurazioni, comandi, collegamenti, montaggio ed installazione sono disponibili nel manuale utente della QTP 12. Tutte le indicazioni di quest'ultimo manuale che si differenziano per la QTP 12.LIB, sono riportate con le opportune modifiche, in paragrafi che hanno lo stesso nome. L'utente deve quindi prendere il manuale della QTP 12 ed integrarlo con il manuale Libreria QTP 12, provvedendo a sostituire i paragrafi omonimi del primo manuale, con quelli del secondo.

Le caratteristiche generali della libreria sono le seguenti:
- Facilmente utilizzabile per sviluppare numerose applicazioni di interfaccia operatore.
- Riduce i tempi, e quindi i costi, di sviluppo dell'applicativo.
- Utilizza una quantità minima di risorse hardware.
- Non usa la linea seriale asincrona che rimane a disposizione per collegamenti con altri sistemi, per il debug dell'applicativo e per la comunicazione di console.
- Caratterizzata da ridotti tempi di esecuzione in modo da poter affrontare anche problemi con tempistiche stringenti.
- Può essere integrata ed/od abbinata alla maggioranza dei linguaggi di programmazione disponibili sul mercato.
- Mantiene la compatibilità d'uso con gli altri firmware delle QTP.
- Include numerosi comandi equivalenti ad altrettante funzionalità.
- Prevede una facile modalità di chiamata ai comandi e di interscambio dei parametri.
- Copre le normali e più frequenti necessità del settore industriale.
- Per lo sviluppo necessita di un normale PC e non richiede nessun hardware aggiuntivo.
- Comoda selezione modalità di partenza (AUTORUN o DEBUG).
- Per gli ambienti di sviluppo proposti da grifo® l'utente trova una completa descrizione sia delle configurazioni per effettuare l'integrazione che delle direttive per preparare il programma applicativo.
- Ampia documentazione e notevole serie di esempi sia in formato sorgente che eseguibile.
- Nessuna licenza o costo aggiuntivo. L'utente è libero di realizzare tutte le applicazioni che desidera.

Nel presente manuale è riportata una descrizione di tutte le caratteristiche della libreria QTP 12 sufficienti per un suo uso.

FIGURA 1: ESEMPIO DI APPLICAZIONE CON QTP 12.LIB
MATERIALE NECESSARIO

Viene di seguito riportata una breve descizione del materiale (hardware e software), necessario per operare con la libreria **QTP 12**:

QTP 12

Coincide con il pannello operatore **QTP 12** appartenente al carteggio industriale **grifo®**. Come abbondantemente descritto nel manuale utente tale prodotto può essere fornito con tre diversi tipi di display e con alcune opzioni aggiuntive. La libreria è in grado di gestire tutti questi modelli e con qualsiasi combinazione di opzioni.

La scelta della configurazione del pannello deve comunque avvenire in relazione alle specifiche esigenze dell'applicazione che deve essere sviluppata.

PERSONAL COMPUTER

La libreria **QTP 12** necessita di un personal computer, che da ora in poi chiameremo **PC di sviluppo**, con le seguenti caratteristiche:

- **Personal Computer:** IBM compatibile (con CPU \geq 486).
- **Memoria RAM:** Minimo 32M Bytes.
- **Sistema operativo:** WINDOWS 95, 98, ME, 2000, NT, XP
- **Monitor:** Colori.
- **Memorie di massa:** Lettore CD-ROM
 - Hard Disk con almeno 30M Byte liberi.
- **Seriale:** RS 232, secondo specifiche V24
- **Mouse:** Microsoft compatibile con relativo driver installato.

CAVO DI COMUNICAZIONE SERIALE

Per alcune delle fasi previste dalla libreria è necessario effettuare un collegamento seriale tra una delle linee seriali del PC di sviluppo e la linea seriale della **QTP 12**. Tale collegamento necessita solo dei segnali di ricezione, trasmissione e massa (RxD, TxD e GND) e deve avvenire seguendo le normative V24 del C.C.I.T.T.

FIGURA 2: COLLEGAMENTO SERIALE TRA QTP 12 E PC DI SVILUPPO
Sul lato PC, qualora non sia disponibile alcuna linea di comunicazione seriale, si possono usare degli appositi convertitori che una volta aggiunti al PC in uso mettono a disposizione la linea seriale RS232 richiesta. Tra questi si possono citare i convertitori USB<->RS232, i convertitori ETHERNET<->RS232, le schede multi I/O con seriali RS232 aggiuntive, ecc. Naturalmente questi dispositivi possono essere usati solo se correttamente installati sia dal punto di vista hardware che software, secondo le indicazioni della casa costruttrice.

Al fine di velocizzare la fase di collegamento ed eliminare la necessità di dover realizzare un cavo di comunicazione, la grifo® è in grado di offrire degli accessori già pronti, ad esempio ordinando il CCR 9+9R.

SOFTWARE DI LAVORO

Assieme all'hardware descritto per operare con la libreria QTP 12 sono necessari dei software di lavoro con cui sviluppare e mettere a punto il programma applicativo. Tale software è organizzato sotto forma di appositi pacchetti e può essere suddiviso in alcuni gruppi principali, come di seguito descritto.

PROGRAMMA SCRITTURA FLASH EPROM: FLIP

Come descritto nei capitoli successivi la libreria QTP 12 deve essere salvata nella FLASH EPROM del microcontrollore assieme al programma applicativo utente. Questo salvataggio avviene tramite una programmazione ISP (In System Programming) che riduce i costi ed i tempi di sviluppo dell'applicazione, infatti elimina la necessità di usare EPROM esterne, programmatore, cancellatore, simulatore, ecc.

La programmazione ISP avviene tramite il PC di sviluppo che eseguendo un apposito programma di gestione, denominato FLIP (FLexible In system Programming), interagisce con un Boot loader presente sul microcontrollore e consente di leggere, cancellare, verificare, programmare sia la memoria FLASH che quella EEPROM. Il tutto avviene tramite un collegamento tra PC e QTP 12.LIB normalmente effettuato con una linea seriale RS 232 (vedi figura 1) oppure, in alternativa, con linea CAN (per quest'ultima possibilità contattare direttamente la grifo®).

Il programma FLIP è fornito nel materiale ricevuto con l'ordine della libreria QTP 12, ma può essere anche scaricato gratuitamente dal sito della ATMEL, seguendo il percorso:

"Products | Microcontrollers | 8051 Architecture | Tools & Software | FLIP"

PROGRAMMA EMULAZIONE TERMINALE SERIALE

Coincide con un generico programma di comunicazione in grado di gestire una classica emulazione terminale, con un protocollo fisico di comunicazione impostabile. Tale programma viene usato come console per i programmi demo forniti e deve rappresentare sul monitor tutto quanto ricevuto dalla linea seriale e trasmettere sulla stessa seriale quanto premuto sulla tastiera.

A questo scopo si ricorda il GET51 sviluppato dalla grifo®, il famoso HYPERTERMINAL di Windows, od i diffusi programmi CROSS TALK, PROCOMM, BITCOMM, TERMINAL, ecc. realizzati da terze parti.
AMBIENTE DI SVILUPPO PROGRAMMA APPLICATIVO

Prima di essere programmato sulla QTP 12.LIB, il programma applicativo dell’utente deve essere generato. A questo scopo si possono convenientemente usare degli appositi ambienti di sviluppo che consentono di scrivere il programma comodamente sul PC di sviluppo e di trasformarlo nel codice macchina usato dal microcontrollore.

In generale la scheda può sfruttare tutte le risorse software per il microcontrollore montato, ovvero i numerosi pacchetti ideati per la famiglia I51, sia ad alto che a basso livello. Gli ambienti di sviluppo software forniti dalla grifo® sono sempre accompagnati da esempi (in formato sorgente ed eseguibile), librerie con console ridirezionabile, file di intestazione ed accessori che effettuano l’integrazione della libreria e la rendono pronta all’uso.

Tra questi ricordiamo:

HI TECH C 51: Cross compilatore per file sorgenti scritti in linguaggio C. E’ un potente pacchetto software che tramite un comodo IDE permette di utilizzare un editor, un compilatore C (floating point), un assemblatore, un ottimizzatore, un linker e un remote debugger. Sono inoltre inclusi i source delle librerie.

SYS51CW: Cross compilatore per programmi scritti in C, disponibile in ambiente WINDOWS con un comodo IDE che mette a disposizione: editor, compilatore C, assemblatore, ottimizzatore, linker, librerie ed un debugger simbolico remoto.

SYS51PW: Cross compilatore per programmi scritti in PASCAL, disponibile in ambiente WINDOWS con un comodo IDE che mette a disposizione: editor, compilatore PASCAL, assemblatore, ottimizzatore, linker, librerie ed un debugger simbolico remoto.

DDS MICRO C 51: E’ un comodo pacchetto software, a basso costo, che tramite un completo IDE permette di utilizzare un editor, un compilatore C (integer), un assemblatore, un linker e un remote debugger abbinato ad un monitor. Sono inclusi i sorgenti delle librerie ed una serie di utility.

BASCOM 8051: Cross compilatore a basso costo per files sorgenti scritti in BASIC, disponibile in ambiente WINDOWS con un comodo IDE che mette a disposizione un editor, il compilatore ed un simulatore molto potente per il debugger del sorgente. Comprende molti modelli di memoria, svariati tipi di dati e numerose istruzioni dedicate alle tipiche risorse hardware usate nell'automazione industriale.

µC/51: E’ un comodo pacchetto software, a basso costo, che tramite un completo IDE permette di utilizzare un editor, un compilatore ANSI C, un assemblatore, un linker e un remote debugger configurabile da utente, a livello sorgente. Sono inclusi i sorgenti delle librerie fondamentali e del remote debugger, alcuni esempi di utilizzo e vari programmi di utility.

LADDER WORK: E’ un semplice sistema per creare programmi di automazione con la conosciuta e diffusa logica a contatti. Include un editor grafico che consente di posizionare e collegare i componenti hardware della scheda (input, output, contatori, A/D, ecc) come su uno schema elettrico e di definire le proprietà, un efficiente compilatore che converte lo schema in codice eseguibile ed utility per il download di tale codice verso la scheda. Il tutto integrato in un comodo IDE per Windows. Viene fornito sotto forma di CD che comprende esempi e manuale d’uso e relativa chiave di abilitazione.
DESCRIZIONE LIBRERIA QTP 12

In questo capitolo vengono descritte tutte le caratteristiche della libreria QTP 12 relative sia al suo uso a bordo del pannello operatore, che alla generazione del programma applicativo. Se l'utente desidera velocizzare il primo utilizzo del pacchetto, si consiglia di seguire i passi del capitolo COME INIZIARE che, quando è necessario, rimanda ai paragrafi di questo capitolo.

CONFIGURAZIONE QTP 12

Per poter usare la libreria QTP 12 lo stesso pannello di controllo deve essere opportunamente configurato. Tale configurazione si rivolge principalmente alla configurazione della linea seriale asincrona di comunicazione su cui si basano tutte le operazioni di scaricamento, prova e salvataggio del programma applicativo.

In generale la configurazione necessaria é quella che setta la linea seriale in RS 232, ovvero:

\[
\begin{align*}
J2, J5 & \rightarrow \text{non connessi} \\
J4 & \rightarrow \text{da connettere e non connettere durante l'uso} \\
IC4 & \rightarrow \text{driver MAX 202}
\end{align*}
\]

Mentre tutti gli altri jumpers non sono significativi e possono essere settati a seconda delle proprie esigenze di lavoro. Qualora la linea seriale asincrona in RS 232 sia una configurazione inaccettabile per il programma applicativo utente, si possono individuare delle soluzioni alternative, contattando direttamente la grifo®.

Si ricorda che la configurazione del jumper J4 deve essere variata frequentemente durante lo sviluppo del programma applicativo; se l'uso di un normale jumper a cavalliere risulta scomodo, si può usare in alternativa un connettore per remotarlo, usando gli appositi accessori descritti nel manuale QTP 12. In quest'ultimo manuale si trovano anche le figure che identificano la posizione degli zoccoli e dei jumpers descritti.

BUFFER DI COMUNICAZIONE

La QTP 12.LIB é dotata di due buffer di comunicazione che rendono possibile il passaggio parametri e risultati dei comandi forniti dal programma applicativo utente

Il primo buffer é di ricezione, è lungo 24 bytes, memorizza i dati ricevuti dal programma utente e viene esaminato e svuotato al termine del comando in corso. Visto che una volta completata la ricezione del comando, la libreria lo esegue immediatamente, non si possono presentare i problemi di riempimento e traboccamento della QTP 12. Il programma applicativo non necessita quindi di alcun ritardo antitraboccamento.

Il secondo buffer é di trasmissione, é lungo 20 bytes, memorizza i dati che la libreria deve restituire al programma applicativo utente e viene quindi riempito con i codici dei tasti premuti e con le risposte dei comandi. Visto che i dati rimangono nel buffer di trasmissione fino a quando il programma utente non li richiede, tale buffer é destinato a riempirsi ed in caso di riempimento tutti i dati successivi vengono persi. Quindi il programma applicativo utente deve gestire la ricezione dalla libreria QTP 12 almeno in due situazioni: prima di fornire comandi con risposte (per svuotare il buffer per le stesse risposte) e periodicamente (per prelevare gli eventuali tasti premuti).
INTEGRAZIONE ED USO DELLA LIBRERIA

La libreria QTP 12 è stata progettata prefissando i seguenti obiettivi:

- poter essere abbinato a tutti i linguaggi di programmazione disponibili;
- ridurre al minimo le risorse hardware usate;
- mantenere la compatibilità d'uso con gli altri firmware delle QTP;
- prevedere un facile modalità di chiamata ai comandi ed interscambio parametri;
- coprire le normali e più frequenti necessità del settore industriale;

che hanno definito le modalità di integrazione ed uso dello stesso firmware, all'interno del programma applicativo dell'utente.

Per chiarezza si ricorda che l'utente della libreria QTP 12 deve avere una conoscenza base del microcontrollore usato e della realizzazione di software embedded in quanto la successiva documentazione non fornisce, ma usa, queste informazioni. Tali conoscenze possono essere acquisite dalla lettura del data sheet, riportato in APPENDICE A del manuale.

In questo paragrafo sono riportate tutte le informazioni generali sull'integrazione e l'uso della libreria QTP 12 che possono essere utilizzate da ogni utente, con qualsiasi ambiente di sviluppo fornito da grifo® o da terze parti.

Per integrare ed usare la libreria sono necessari alcuni strumenti hardware e software che vengono opportunamente indicati nella successiva descrizione. La documentazione completa di tali strumenti è disponibile all'interno degli stessi e non viene quindi riportata in questo manuale.

Concludendo le operazioni necessarie per integrare ed usare la libreria sono:

a) Installare l'ambiente di sviluppo prescelto per realizzare il programma applicativo, sul PC di sviluppo. In generale la scheda può sfruttare tutti gli ambienti per il microprocessore montato, ovvero i numerosi pacchetti ideati per la famiglia 51, sia ad alto che a basso livello (assemblatori, compilatori, interpreti, ecc.). Tutti i pacchetti di sviluppo software forniti dalla grifo® sono sempre accompagnati dagli elementi che integrano completamente il firmware rendendolo pronto all'uso.

b) Installare l'ambiente di programmazione ISP (In System Programming) sul PC di sviluppo, ovvero il programma FLIP che comunicando con il Boot loader del microcontrollore, attraverso la porta seriale, permette di leggere, cancellare e riscrivere la memoria FLASH EPROM.

La programmazione ISP riduce i costi ed i tempi di sviluppo dell'applicazione, infatti elimina la necessità di usare EPROM esterne, programmatori, cancellatori, ecc. Per ulteriori informazioni sulla programmazione ISP si prega di consultare la specifica documentazione tecnica rilasciata dalla ATME.

c) Predisporre l'ambiente di sviluppo in modo che nel programma applicativo generato siano preservate le risorse hardware usate dalla libreria; come illustrato nelle figure 3, 4 e nel successivo paragrafo RISORSE USATE DALLA LIBRERIA, il programma applicativo non deve usare l'area finale della FLASH, alcune aree di RAM interna, un timer counter, la EEPROM di bordo, ecc.
d) Fisicamente la libreria coincide con un codice eseguibile che deve essere salvato al termine della area codice del microcontrollore come indicato in figura 3. Tale codice viene fornito nel file QTP12xx.HEX che, grazie al suo formato HEX, può essere utilizzato direttamente per la programmazione della FLASH. In quest’ultima memoria oltre al firmware descritto si dovrà salvare anche il codice eseguibile del programma applicativo utente che deve essere naturalmente allocato all'inizio dell'area codice in modo che venga immediatamente eseguito a seguito di un'accessione o di un reset. Il passaggio dal programma applicativo alla libreria è effettuato tramite un'opportuna tabella di entrata, allocata ad indirizzi fissi, che funge da ponte di collegamento tra i due codici presenti nell'unica area codice. La scelta degli indirizzi di allocazione delle tre aree in FLASH è stata effettuata attentamente in modo da avere il massimo spazio libero per il programma applicativo, avere dei punti di entrata che rimangono inalterati anche in caso di aggiornamenti ed ampliamenti della libreria ed avere punti di entrata coincidenti nelle librerie di QTP diverse. Così facendo l'utente può usare una nuova versione di libreria od una QTP diversa, semplicemente riprogrammandola nella FLASH, senza intervenire sul suo programma applicativo.

e) Il valore di **INIZIO FW LIB.** è stabilito dalla libreria stessa e quindi varia al variare della sua versione; attualmente con la versione 2.1 è fissato a **2CC0H** e comunque può essere facilmente determinato caricando il file **QTP12xx.HEX** (dove xx corrisponde al numero di versione) ed esaminando il suo indirizzo di inizio.
L'utente a seguito di ogni realizzazione del programma applicativo deve sempre verificare che il relativo indirizzo di fine **FINE SW APPL.** sia inferiore all'**INIZIO FW LIB.** ovvero che i due codici non si sovrappongano. Questa verifica può essere effettuata facilmente infatti normalmente tutti gli ambienti di sviluppo (assemblatori, compilatori, linguaggi, ecc.) forniscono indicazioni sulle dimensioni del codice generato e sarà quindi sufficiente confrontare tali indicazioni con il valore di **INIZIO FW LIB.** descritto prima.

f) Ridirezionare il vettore di risposta all'interrupt TIMER0 del microcontrollore, al corrispondente punto d'entrata della libreria indicato in figura 3. La ridirezione descritta deve essere realizzata seguendo le regole dell'ambiente di sviluppo e normalmente coincide con un'istruzione di salto assoluto (ad esempio LJMP 3F8EH) all'indirizzo di entrata, posta nella procedura di risposta al relativo interrupt. Si ricorda che la ridirezion dell'interrupt TIMER0 é indispensabile per ottenere un completo funzionamento della libreria, in particolare per tutti i processi basati sul tempo come la scansione tastiera, attivazione temporizzata delle risorse, shift messaggi, rappresentazione orologio, ecc.

g) Al fine di semplificare l'uso della libreria, di tutti i suoi comandi ed il passaggio parametri e risultati sono state previste tre procedure, con altrettanti punti di entrata, con le seguenti caratteristiche:

STATO CONSOLE: restituisce lo stato di presenza di un dato che la libreria deve fornire al programma applicativo; il dato può essere il codice di un tasto premuto oppure la risposta ad un comando inviato. La procedura non ha dati d'ingresso ed un solo dato d'uscita salvato nell'Accumulatore che coincide con il numero di caratteri pronti per essere forniti al programma applicativo. Tale numero di caratteri funziona anche da stato infatti se azzerato non vi sono dati e viceversa.

INGRESSO CONSOLE: attende la disponibilità di un dato che la libreria fornisce al programma applicativo e lo restituisce; anche per questa procedura il dato può essere il codice di un tasto premuto oppure la risposta ad un comando inviato. La procedura non ha dati d'ingresso ed un solo dato d'uscita salvato nell'Accumulatore, che coincide con il dato descritto.

USCITA CONSOLE: invia un dato dal programma applicativo alla libreria; il dato può essere un carattere da rappresentare sul display oppure un comando da inviare ed i suoi eventuali parametri. La procedura ha un solo dato d'ingresso salvato nell'Accumulatore che coincide con il dato descritto e non ha dati d'uscita.

Nel programma applicativo la maggioranza delle funzioni offerte dalla libreria vengono usate con le tre procedure descritte; per l'utente é conveniente ridirezionare le procedure di console dell'ambiente di sviluppo scelto (che hanno già una struttura compatibile) su queste procedure. Questo metodo spiega il suffisso CONSOLE che é stato attribuito alle stesse procedure ed allo stesso tempo fornisce una notevole semplificazione ed una impareggiabile potenzialità d'uso. Infatti le istruzioni ad alto livello **PRINT, PRINTF, PUTS, KBHIT, SCANF, INPUT,** ecc. di un ambiente di sviluppo in C o BASIC, chiamano automaticamente le tre procedure di entrata della libreria consentendo di utilizzare tutte le loro possibilità. Ad esempio con l’istruzione C:

```c
printf("Pezzi prodotti=%4d",npezzi);
```

si rappresenta sul display la stringa **Pezzi prodotti=** seguita dal valore della variabile `npezzi`, formattata a 4 cifre decimali.

g) A seguito di un reset o di un'accensione il programma applicativo utente deve predisporre la libreria alle successive operazioni. Per queste inizializzazioni sono disponibili due procedure, con altrettanti punti di entrata, con le seguenti caratteristiche:
INIZIALIZZA FW: effettua tutte le operazioni di inizializzazione necessarie come:
- settaggio variabili;
- azzeramento buffer;
- disattivazione di buzzer, LED di stato, uscita digitale;
- disabilitazione e disattivazione sveglia;
- inizializzazione e cancellazione display;
- settaggio cursore blocco lampeggiante, nella posizione di Home;
- caricamento dei caratteri utente;
- visualizzazione eventuale rappresentazione automatica d'accensione
- settaggio del keyclick impostato;
- attivazione scansione tastiera;
- attivazione funzioni temporali;
- ecc.
La procedura non ha dati d'ingresso ed uscita e deve essere sempre chiamata prima di ogni altra funzione con la libreria.

INIZIALIZZA EEPROM: inizializza la EEPROM di base con i dati di default descritti nel paragrafo DATI IN EEPROM del manuale QTP 12 e poi effettua tutte le operazioni di inizializzazione descritte per la procedura INIZIALIZZA FW. La procedura ha tre dati d'ingresso e non ha dati d'uscita. IL salvataggio e la codifica dei dati d'ingresso è la seguente:

<table>
<thead>
<tr>
<th>Registro</th>
<th>Tipo di Display Montato</th>
<th>addressing</th>
<th>Biblioteca</th>
<th>Tamaño (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumulator -> 0</td>
<td>display LCD alfanumerico 20x2</td>
<td>QTP 12/-C2.LIB</td>
<td>16K</td>
<td></td>
</tr>
<tr>
<td>Accumulator -> 1</td>
<td>display VFD alfanumerico 20x2</td>
<td>QTP 12-F2.LIB</td>
<td>32K</td>
<td></td>
</tr>
<tr>
<td>Accumulator -> 2</td>
<td>display VFD grafico 140x16</td>
<td>QTP 12-GF2.LIB</td>
<td>64K</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Registro</th>
<th>Funzione Uscita Digitale</th>
<th>addressing</th>
<th>Biblioteca</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>uscita utente</td>
<td>0-INTRTC</td>
<td>QTP 12/-C2.LIB</td>
</tr>
<tr>
<td>1</td>
<td>uscita sveglia</td>
<td>1-INTRTC</td>
<td>QTP 12-F2.LIB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Registro</th>
<th>Dimensione EEPROM Opzionale</th>
<th>addressing</th>
<th>Biblioteca</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>nessuna EEPROM Opzionale</td>
<td>0-EE128</td>
<td>QTP 12-xx.LIB.EE128</td>
</tr>
<tr>
<td>1</td>
<td>EEPROM Opzionale da 16K Bytes</td>
<td>1-EE256</td>
<td>QTP 12-xx.LIB.EE256</td>
</tr>
<tr>
<td>2</td>
<td>EEPROM Opzionale da 32K Bytes</td>
<td>2-EE512</td>
<td>QTP 12-xx.LIB.EE512</td>
</tr>
</tbody>
</table>

Si ricorda che la durata dell'esecuzione di questa procedura è di circa 25 secondi. La procedura INIZIALIZZA EEPROM deve essere chiamata una sola volta per salvaguardare la durata dell'EEPROM su cui scrive: i suoi usi tipici sono quelli in corrispondenza della prima installazione oppure quando si devono ripristinare i settaggi iniziali a causa di modifiche indesiderate.

Normalmente entrambe le procedure di inizializzazione devono essere chiamate una sola volta all'inizio del programma applicativo, usando le modalità dell'ambiente di sviluppo scelto; queste normalmente coincidono con una istruzione di chiamata assoluta (ad esempio LCALL 3FF4H) all'indirizzo di entrata, preceduta da un eventuale settaggio dei dati d'ingresso.

h) Una volta realizzato il programma utente che usa la libreria con le caratteristiche descritte nei punti precedenti lo si deve salvare nella FLASH EPROM della QTP 12.LIB assieme alla stessa libreria, come descritto nel paragrafo PROGRAMMAZIONE FLASH EPROM.

i) A questo punto la QTP 12.LIB è completa e pronta ad essere usata e testata all'interno dell'applicazione utente. Il debug del programma applicativo ottenuto può essere effettuato con gli strumenti messi a disposizione dall'ambiente di sviluppo usato, ricordando che la linea seriale (non usata dalla libreria) è un ottimo candidato per questa funzione.
RISORSE USATE DALLA LIBRERIA

La libreria dispone di comandi che consentono di gestire facilmente la maggioranza delle risorse della scheda come display, tastiera, buzzer, LED, uscita digitale, memorie EEPROM e SRAM tamponata, orologio, interfaccia I2C BUS, ecc. Tali comandi però utilizzano una serie di risorse hardware aggiuntive della QTP 12 che sono brevemente descritte in questo paragrafo, assieme alle conseguenti limitazioni d'uso, da parte del programma applicativo utente:

Area codice in FLASH EPROM del microcontrollore: coincide con la porzione finale della FLASH EPROM, già descritta nei punti (d), (e) del paragrafo precedente. Su tale area viene salvato il codice della libreria e non deve essere assolutamente usata dal programma applicativo, pena il malfunzionamento di tutto il sistema. Alcuni ambienti di sviluppo (come il BASCOM 8051) possono essere configurati per avvisare l'utente in caso di generazione di un codice che supera un limite impostato (FINE SW APPL. >= INIZIO FW LIB.).

Aree dati in RAM interna del microcontrollore: coincide con due aree di RAM interna di cui la prima allocata nell'area ad accesso diretto e la seconda ad accesso indiretto, in cui sono salvate tutti i flag, le variabili ed i buffer della libreria. Queste aree sono allocate agli indirizzi fissi descritti in figura 4 e non devono essere assolutamente usate dal programma applicativo, pena il malfunzionamento di tutto il sistema. La salvaguardia d'uso di queste memorie è realizzata seguendo le regole dell'ambiente di sviluppo usato e normalmente avviene con direttive per il compilatore, settaggi dell'eventuale progetto, dichiarazione di variabili che vengono solo allocate ma mai usate, utilizzo di codici di partenza (start up) utente, ecc. Le finestre con i risultati della generazione del programma utente, normalmente proposte dall'ambiente di sviluppo, consentono di verificare facilmente la salvaguardia di tali aree, evitando di scoprire i conseguenti malfunzionamenti in fase di prova. Si ricorda che la scelta d'uso della memoria della libreria è stata effettuata cercando di lasciare comunque a disposizione tutti i tipi di memoria del microcontrollore, ovvero: 4 byte indirizzabili a bit per un totale di 32 bit utente, 43 byte ad accesso diretto, 48 byte ad accesso indiretto ed infine 1024 byte di RAM esterna. Inoltre la completezza dei comandi offerti dal firmware riduce drasticamente la necessità di memoria e variabili nel programma applicativo utente, tanto che spesso si riduce allo stack ed a poche variabili di lavoro.

Area di stack del microcontrollore: la libreria non ha un proprio stack e quindi usa quello del programma applicativo. L'utente in fase di configurazione dell'ambiente di sviluppo scelto deve tenere conto della profondità di stack necessaria al firmware, che nella condizione peggiore può arrivare a 25 bytes.

Contatatore temporizzatore TIMER0 del microcontrollore: per gestire tutti i processi temporali la libreria necessita di un interrupt periodico generato dal TIMER0 del microcontrollore. Il programma applicativo utente non può usare questa risorsa, deve ridirezionare il relativo vettore d'interrupt del microcontrollore (000BH) al punto di entrata (3FE8H) e deve ricordare che una volta inizializzato, il firmware risponde a questo interrupt ogni 2,5 msec con un conseguente rallentamento nell'esecuzione. La riduzione delle prestazioni del programma applicativo dipende dai comandi usati e dai processi in corso ed in alcuni casi può arrivare a decine di msec, come opportunamente segnalato nella descrizione degli stessi comandi.
Figura 4: Uso RAM con libreria
PROGRAMMAZIONE FLASH EPROM

Come descritto nei paragrafi precedenti la libreria deve essere salvata nella FLASH EPROM del microcontrollore assieme al programma applicativo utente, come illustrato in figura 3. Questo salvataggio avviene tramite una programmazione ISP (In System Programming) che riduce i costi ed i tempi di sviluppo dell’applicazione.

La programmazione ISP avviene tramite il PC di sviluppo che, eseguendo un apposito programma di gestione denominato FLIP (FLexible In system Programming), interagisce con un Boot loader presente sul microcontrollore e consente di leggere, cancellare, verificare, programmare sia la memoria FLASH che quella EEPROM. Il tutto avviene tramite un collegamento tra il PC e la QTP 12.LIB normalmente effettuato con linea seriale RS 232 oppure, in alternativa, con linea CAN (per quest’ultima possibilità contattare direttamente la grifo®).

Come descritto nel manuale della QTP 12 il jumper J4 seleziona la modalità operativa tra le due disponibili:

- Non connesso -> Modalità RUN
- Connesso -> Modalità DEBUG

In modalità RUN a seguito di un'accensione parte sempre il programma applicativo salvato in FLASH indipendentemente dalle condizioni esterne, mentre in modalità DEBUG l'accensione provoca l'esecuzione del Boot loader del microcontrollore e consente quindi la programmazione ISP. Si ricorda che la configurazione del jumper J4 deve essere variata frequentemente durante lo sviluppo del programma applicativo; se l'uso di un normale jumper a cavalliere risulta scomodo, si può usare in alternativa un connettore per remotarlo, usando gli appositi accessori descritti nel manuale QTP 12.

Nei punti seguenti vengono illustrate le istruzioni che l'utente deve compiere per programmare correttamente la FLASH della QTP 12.LIB:

01) Installare il programma FLIP prelevandolo dal sito ATMEL o dal CD grifo® ricevuto.
02) Impostare modalità DEBUG, ovvero collegare il jumper J4.
03) Chiudere ogni programma che possa usare la linea seriale COMx del PC di sviluppo.
04) Fornire alimentazione alla QTP 12.
05) Lanciare il programma FLIP installato al punto 1.
06) Premere il primo pulsante in alto a sinistra, scegliere il microcontrollore da programmare nella finestra che appare e quindi premere OK. Tale selezione deve essere effettuata a seconda della QTP ordinata, ovvero T89C5115 in caso di QTP 12 e T89C51CC02 in caso di QTP 12.CAN.

![Figura 5: Finestra settaggio FLIP (1 di 4)](image-url)
07) Impostare le modalità di comunicazione per la programmazione ISP della QTP ovvero premere il secondo pulsante in alto da sinistra, scegliendo in sequenza: RS 232, la porta seriale del PC, 115200 Baud e quindi premendo il pulsante Connect. A questo punto il FLIP instaura la comunicazione con il Boot loader del microcontrollore e compila una serie di dati nella sua finestra principale. Se la comunicazione non si instaura e dopo circa 20 secondi appare la finestra Timeout Error, potete provare ad: abbassare la velocità di comunicazione da 115200 a 19200 Baud; ed a ripetere i punti 2÷7.

![Figura 6: finestra settaggio FLIP (2 di 4)](image)

08) Aprire la finestra Buffer | Options settare a NO la voce Reset Buffer Before Loading, selezionare la voce Whole buffer in modo da garantire il successivo corretto caricamento dei file da programmare e confermare le scelte con il tasto OK.

![Figura 7: finestra settaggio FLIP (3 di 4)](image)

09) Caricare i due file da salvare nella FLASH EPROM ovvero la libreria QTP12xx.HEX ed il programma applicativo <file utente>.HEX, effettuando due volte le seguenti operazioni: premere il nono pulsante da sinistra e selezionare il file tramite la finestra di dialogo che appare.
10) Spuntare tutte le caselle del riquadro Operations Flow come in figura 8, in modo che il FLIP esegua sequenzialmente le quattro operazioni di: cancellazione, verifica di cancellazione, programmazione e verifica di programmazione.
11) A questo punto assicurarsi che la finestra principale del FLIP si presenti come in figura 8, in particolare per le voci Size:, X2; Device SSB e BSB / EB / SBV.
12) Premere il pulsante *Run* nella finestra principale per avviare le operazioni ISP impostate.
13) Attendere la fine delle operazioni ISP. Nella barra di stato in basso si può vedere l'operazione in corso assieme ad una barra a scorrimento che indica il suo stato di avanzamento; le caselle di spunto diventano rosse durante l'esecuzione e poi verdi man mano che la rispettiva operazione viene completata. Si deve quindi aspettare che la casella *Verify* diventi verde.
14) A questo punto la FLASH è programmata ed il FLIP può essere chiuso.

Al fine di velocizzare le operazioni sopra descritte, che devono essere ripetute ad ogni prova del programma applicativo, si può conveniente usare la modalità BatchISP del FLIP corredata di un adeguato file di comando, con le seguenti istruzioni:

```
-device T89C5115
-hardware RS232
-port COM1
-baudrate 115200
-operation

-memory FLASH
-erase F
-loadbuffer "QTP1221.HEX"
-loadbuffer "<file utente>.HEX"
-addrange 0x0000 0x3FFF
-program
-verify
```

Nei paragrafi COME INIZIARE.... sono disponibili esempi di programmazione della FLASH, corredati da fotografie esplicative; per ulteriori informazioni sulla programmazione ISP e sull'uso del programma FLIP si prega di consultare la specifica documentazione tecnica rilasciata dalla ATMEL.
Nella QTP 12.LIB non è disponibile la modalità di setup locale descritta nel manuale utente della stessa scheda. Molte delle impostazioni definibili in questo setup non sono necessarie in quanto riguardano la comunicazione con l’unità di comando che con la libreria, non è più disponibile. I rimanenti settaggi sono invece disponibili nella funzione INIZIALIZZA EEPROM descritta nei precedenti paragrafi.

Firmware di libreria:
- Cursore a inizio
- Cursore a destra
- Pos. cursore alfanum.
- Cancella pagina
- Cancella riga
- Seleziona gruppo mess.
- Lettura messaggio
- Visualizzazione n. mess.
- Settaggio orologio
- Visualizzazione orario
- Impostazione sveglia
- Pos. cursore grafico
- Settaggio area grafica
- Settaggio font grafico

FIGURA 9: MODALITÀ SVILUPPO CON LIBRERIA

SETUP LOCALE

Il Setup Locale non è disponibile nella versione QTP 12.LIB.
MODALITÀ DI COMUNICAZIONE

A differenza del firmware di base della QTP 12, la libreria non prevede alcuna modalità di comunicazione verso unità di comando. Per questa ragione la linea seriale asincrona su CN2 non é usata dalla libreria, mentre la linea I2C BUS é usata dalla libreria solo in modalità master ma non in modalità slave.

In questo modo il programma applicativo può liberamente colloquiare con altri dispositivi sia in modalità punto punto che in rete, con qualsiasi protocollo fisico, logico ed elettrico. Tramite l'ambiente di sviluppo scelto sulla linea seriale si può inoltre effettuare il debug del programma applicativo, riducendo i tempi complessivi di preparazione.

Il protocollo fisico di comunicazione può essere definito dal programma applicativo utente tramite la programmazione di alcuni registri interni del microcontrollore. In dettaglio si possono programmare 8,9 bit per carattere; parità pari, dispari o nessuna; 1 o 2 bit di stop; con baud rate standard e non standard, fino a 115200 Baud.

Il protocollo logico di comunicazione é altrettanto libero e sempre definito dal programma utente che può quindi implementare sia protocolli standard (MODBUS, XMODEM, ecc.) che propri e comunicare quindi con tutti i sistemi presenti sul mercato, come stampanti, PC, modem, PLC, terminali, altri pannelli operatore, ecc.

Nel caso di comunicazioni RS 422 o RS 485 il programma applicativo utente si deve occupare anche di un apposito segnale denominato DIR, collegato al segnale P2.1 del microcontrollore, come di seguito descritto:

- **Comunicazione RS 422 punto punto:** sia il trasmettitore che il ricevitore possono essere sempre abilitati.

 P2.1 = DIR = 0 -> trasmettitore attivo

- **Comunicazione RS 422 in rete:** il ricevitore é sempre abilitato mentre il trasmettitore deve essere abilitato solo in fase di trasmissione.

 P2.1 = DIR = 0 -> trasmettitore attivo

 P2.1 = DIR = 1 -> trasmettitore disattivo

- **Comunicazione RS 485:** il ricevitore é sempre abilitato ed il trasmettitore deve essere abilitato solo in fase di trasmissione, ottenendo la funzionalità di trasmissione o ricezione sulla linea half duplex.

 P2.1 = DIR = 0 -> linea in trasmissione

 P2.1 = DIR = 1 -> linea in ricezione

In fase di accensione, il segnale P2.1 = DIR é mantenuto a livello logico 1 di conseguenza in seguito ad una di queste fasi il driver RS 485 é in ricezione o il driver di trasmissione RS 422 é disattivo, in modo da eliminare eventuali conflitti sulla linea di comunicazione.

PROGRAMMI DEMO PER Firmware di Libreria

In caso di primo acquisto tra il materiale ricevuto (dischi o CD) sono disponibili numerosi programmi dimostrativi che consentono di provare e valutare immediatamente il prodotto scelto. Tali programmi sono forniti in formato eseguibile e sorgente, sono corredati di tutti i file di contorno necessari (header, progetti, librerie, configurazioni, ecc.) e sono disponibili per gli ambienti di sviluppo proposti da grifo®.
Come indicato nel paragrafo COME INIZIARE... i programmi con il nome PRFWQ12.* utilizzano tutti i comandi disponibili tramite una semplice iterazione con l'utente e consentono quindi di gestire il display in tutte le sue modalità di rappresentazione alfanumeriche e grafiche, la tastiera, il LED ed il buzzer, la/le EEPROM, i messaggi, l'uscita digitale, l'orologio e la sua funzione di sveglia, alcune periferiche I2C BUS, ecc.

Al fine di velocizzare l'uso degli esempi ed avere delle dimensioni compatibili con l'are codice lasciata libera dalla libreria, questi sono stati divisi in diversi programmi, ognuno dedicato ai principali gruppi di caratteristiche della libreria QTP 12. L'utente può esaminare il cartiglio di tali esempi e decidere autonomamente se provarli.

Tutti i programmi dimostrativi possono essere usati direttamente oppure modificati od utilizzati in parte, a seconda delle proprie esigenze, senza alcuna autorizzazione o costo aggiuntivo. In caso di particolari esigenze o combinazioni d'uso possono essere anche richiesti dei programmi specifici, oppure dei demo per diversi ambienti di sviluppo, previo accordo con la grifo®.
UTILIZZO LIBRERIA QTP 12 CON µC/51

In questo capitolo vengono riportate tutte le informazioni che riguardano l'integrazione e l'uso della libreria QTP12 con l'ambiente di sviluppo µC/51.

Il µC/51 è un comodo pacchetto software, a basso costo, che tramite un completo IDE permette di utilizzare un editor, un compilatore ANSI C, un assemblatore, un linker e un remote debugger configurabile da utente, a livello sorgente. Sono inclusi i sorgenti delle librerie, interessanti programmi di utilità, documentazione d'uso ed una ricca serie di esempi.

Si ricorda che questo capitolo riporta solo le informazioni sull'uso della libreria, non sul normale uso del µC/51 e si consiglia quindi all'utente di esaminare la documentazione del pacchetto prima di esaminare i seguenti paragrafi.

INTEGRAZIONE LIBRERIA NEL µC/51

Facendo riferimento a quanto descritto nel paragrafo INTEGRAZIONE ED USO DELLA LIBRERIA, le tecniche usate per integrare la libreria nell'ambiente di sviluppo sono le seguenti:

- Sono state modificate le librerie del compilatore con le funzioni di console in modo da poterle ridirezionare sulle funzioni di console della libreria. In dettaglio per non perdere la console del µC/51 associata alla linea seriale del microprocessore è stato previsto un flag, denominato CONS_QTP, che seleziona il dispositivo usato con la seguente corrispondenza:
 - 0 -> console associata alla linea seriale
 - 1 -> console associata alla libreria QTP 12

Il flag CONS_QTP coincide con un bit di RAM interna allocato all'indirizzo 28H. Il µC/51 dispone di tre diverse librerie di console con altrettante modalità di gestione della seriale (P = polling, D = debugger, K = veloce) e tutte sono state modificate come descritto, aggiungendo la lettera Q come suffisso al loro nome originale (vedi paragrafo FILE FORNITI CON µC/51).

- Sono state riservate le aree di memoria RAM interna usate dalla libreria, provvedendo a definire tre appositi segmenti rispettivamente per l'area ad accesso diretto a bit, l'area ad accesso diretto a byte e l'area ad accesso indiretto a byte. Tali segmenti sono stati poi referenziati in una procedura di start up utente, che provvede ad informare il compilatore su quale memoria usare.

- E’ stata ridirezionata la procedura di risposta all'interrupt del Timer 0.

- Sono state create due funzioni che chiamano le corrispondenti procedure di inizializzazione della libreria QTP 12. Tali funzioni sono state chiamate:
 - `ini_qtp12_fw();` -> chiama la procedura INIZIALIZZA FW;
 - `ini_qtp12_fw(disptype,fnrtcint,exteesize);` -> chiama la procedura INIZIALIZZA EEPROM con i tre parametri passati, opportunamente salvati sui rispettivi registri;

Tutte le tecniche descritte sono state radunate in un unico file, denominato FWQTP12.H, che coincide con il file di dichiarazioni, necessario all'uso della libreria QTP 12. Tale file deve essere sempre incluso nei programmi applicativi sviluppati dall'utente in quanto provvede a rendere immediatamente utilizzabile la stessa libreria.
Segue una breve descrizione dei file necessari per sviluppare un programma applicativo utente con la libreria, usando il software di sviluppo µC/51. Tali file sono naturalmente forniti nelle cartelle del CD o disco ricevuto in abbinamento al primo acquisto del pannello operatore QTP 12.LIB.

\LIB\LARGE*.* -> File di libreria per console con modello di memoria large del µC/51. Questi file associano le istruzioni C di console alle funzioni del firmware di libreria quando il bit di RAM interna all'indirizzo 28H è settato e viceversa, alla linea seriale hw quando il bit è resettato. Come nei file di libreria originali ci sono tre diverse modalità di gestione della console:

SER_IODQ.LIB = gestione in interrupt con debugger;
SER_IOPQ.LIB = gestione in polling con debugger;
SER_IOKQ.LIB = gestione in polling senza debugger;

Devono essere copiati manualmente sull'hard disk del PC di sviluppo, nella cartella \UC51\LIB\LARGE\.

\LIB\SMALL*.* -> File di libreria per console con modello di memoria small del µC/51. Questi file associano le istruzioni C di console alle funzioni del firmware di libreria quando il bit di RAM interna all'indirizzo 28H è settato e viceversa, alla linea seriale hw quando il bit è resettato. Come nei file di libreria originali ci sono tre diverse modalità di gestione della console:

SER_IODQ.LIB = gestione in interrupt con debugger;
SER_IOPQ.LIB = gestione in polling con debugger;
SER_IOKQ.LIB = gestione in polling senza debugger;

Devono essere copiati manualmente sull'hard disk del PC di sviluppo, nella cartella \UC51\LIB\SMALL\.

QTP12xy.HEX -> File con codice eseguibile della libreria QTP 12, nella versione x.y. Deve essere copiato manualmente nella cartella di lavoro del PC di sviluppo.

CANARY.H -> File di include con la dichiarazione dei registri delle periferiche interne del microcontrollore CANary usato sulla QTP 12.LIB. Deve essere copiato manualmente nella cartella di lavoro del PC di sviluppo.

FWQ12.H -> File di include con integrazione della libreria QTP 12 (riserva aree di memoria, setta punti di entrata, ridireziona interrupts, ecc.). Deve essere copiato manualmente nella cartella di lavoro del PC di sviluppo.

DL.BAT -> File di gestione download del codice generato sulla FLASH della QTP 12.LIB (tramite i file di comando descritti ai punti seguenti) e successivo lancio del programma di emulazione terminale HYPERTERMINAL. Deve essere copiato manualmente nella cartella di lavoro del PC di sviluppo e deve essere modificato in relazione ai percorsi in cui sono salvati i programmi usati.

TERM19_COM1.HT -> File di configurazione per programma di emulazione terminale HYPERTERMINAL, che imposta il protocollo fisico di comunicazione sul PC di sviluppo, che così opera come console per il programma dimostrativo. Deve essere copiato manualmente nella cartella di lavoro del PC di sviluppo.

PRFWQ12.MAK -> File progetto per l'omonimo file sorgente. Deve essere copiato manualmente nella cartella di lavoro del PC di sviluppo.
PRFWQ12.HEX -> File eseguibile per l'omonimo file sorgente. Deve essere copiato manualmente nella cartella di lavoro del PC di sviluppo.

PRFWQ12.WSP -> File di predisposizione del JFE editor usato come completo IDE che consente all'utente di modificare, compilare e programmare l'omonimo programma dimostrativo. Deve essere copiato manualmente nella cartella di lavoro del PC di sviluppo e deve essere modificato in relazione ai percorsi delle cartelle usate.

PRFWQ12.CMD -> File di comando per la programmazione ISP della FLASH su QTP 12.LIB: effettua tutte le operazioni per salvare il programma demo e la libreria, usando la versione batch del FLIP. Deve essere copiato manualmente nella cartella di lavoro del PC di sviluppo ed eventualmente modificato in relazione al microcontrollore usato.

PRFWQ12_OPT.* -> Files del secondo programma dimostrativo che usa tutti i comandi per le opzioni ed accessori esterni, della libreria QTP 12. Devono essere copiati manualmente nella cartella di lavoro del PC di sviluppo come descritto nei corrispondenti file PRFWQ12.*.

PRFWQ12_GRF.* -> Files del terzo programma dimostrativo che usa tutti i comandi per la grafica, della libreria QTP 12. Devono essere copiati manualmente nella cartella di lavoro del PC di sviluppo come descritto nei corrispondenti file PRFWQ12.*.

Con l'indicazione "cartella di lavoro del PC di sviluppo" s'intende la cartella generata sul PC di sviluppo in cui l'utente intende lavorare e quindi sviluppare il proprio programma applicativo. Riassumendo, in questa cartella devono essere copiati tutti file forniti ad eccezione di quelli di libreria. Si ricorda che nel tempo possono essere sviluppati altri programmi e/o files non riportati nella precedente lista: questi possono essere esaminati tramite il loro cartiglio. Qualora i files descritti siano ricevuti su CD ROM, a seguito della loro copia sul PC di sviluppo, si devono verificare le proprietà dei files copiati ed assicurare che il campo Sola lettura sia disattivo.

COME INIZIARE CON LIBRERIA QTP 12 E µC/51

In questo paragrafo vengono illustrate le operazioni da effettuare per iniziare ad usare la QTP12.LIB in maniera rapida e lineare in abbinamento all'ambiente di sviluppo µC/51, senza dover affrontare e risolvere alcun problema iniziale.

A) Collegamento seriale tra QTP12.LIB e PC di sviluppo:
A1) Realizzare il collegamento seriale descritto nella figura 2 ovvero collegare i due segnali di comunicazione (TX RS232, RX RS232) e la massa di riferimento (GND) ad una porta di comunicazione COMx libera, del PC di sviluppo. Come si può notare tale cavo di collegamento è rovesciato e per praticità può essere ordinato alla grifo® specificando il codice CCR 9+9R.
A2) Avviare il programma di emulazione terminale HYPERTERMINAL sul PC di sviluppo ed impostare la comunicazione a:

<table>
<thead>
<tr>
<th>Connett.</th>
<th>direttamente a COM x (quella usata al punto A1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit per secondo</td>
<td>19200</td>
</tr>
<tr>
<td>Bit di Dati</td>
<td>8</td>
</tr>
<tr>
<td>Parità</td>
<td>Nessuna</td>
</tr>
<tr>
<td>Bit di Stop</td>
<td>1</td>
</tr>
<tr>
<td>Controllo di flusso</td>
<td>Nessuno</td>
</tr>
</tbody>
</table>
A3) Impostare la modalità RUN, ovvero non collegare il jumper J4.

A4) Fornire alimentazione su CN1 e verificare che: il buzzer si disattivi, che sul monitor del PC di sviluppo compaia la presentazione del programma demo e che a distanza di 5 secondi sul display compaia la stringa *Programma demo libreria QTP12*, con il cursore lampeggiante nell'angolo in basso a destra. Ogni QTP 12.LIB, in caso di primo acquisto, viene fornita con il rispettivo programma demo e la libreria già programmati nella FLASH e configurata per farlo partire all'accensione: se non vedete comparire le schermate iniziali descritte, riverificate le connessioni seriali e controllate che il jumper J4 sia correttamente posizionato.

A5) Seguire le istruzioni del demo in modo da provare tutti i comandi della libreria e da verificarne gli effetti: l'utente deve interagire con il demo sia tramite la console seriale sul PC di sviluppo che tramite le risorse della stessa QTP.

![Figura 11: Esecuzione programma demo](image)

Figura 11: Esecuzione programma demo

A6) Terminata l'esecuzione del demo, togliere alimentazione alla QTP.

A7) Uscire dal programma HYPERTERMINAL sul PC di sviluppo.

B) Riprogrammazione della FLASH con programma demo:

B1) Sul disco grifo® ricevuto, localizzare e quindi installare sul disco rigido del PC di sviluppo il programma di utility FLIP. Questo gestisce la programmazione ISP della FLASH EPROM sulla QTP 12.LIB, come descritto nel precedente paragrafo PROGRAMMAZIONE FLASH EPROM.

B2) Installare l'ambiente di sviluppo µC/51 sul disco rigido del PC di sviluppo e provvedere alla sua registrazione, in modo che non abbia i limiti della versione demo.

B3) Creare sull'hard disk del PC di sviluppo una cartella in cui si intende salvare tutto il lavoro svolto.

B4) Copiare i file di libreria descritti nel paragrafo FILES FORNITI CON µC/51, nelle cartelle con librerie create al punto B2, provvedendo ad eliminare l'eventuale proprietà di *Sola lettura*.

B5) Copiare tutti i rimanenti file descritti nel paragrafo FILES FORNITI CON µC/51, nella cartella di lavoro creata al punto B3, provvedendo ad eliminare l'eventuale proprietà di *Sola lettura*.
B6) Modificare il file DL.BAT con un semplice editor ASCII (ad esempio BLOCCO NOTE di Windows), andando ad impostare i giusti percorsi in cui sono salvati i programmi usati. Tali percorsi sono quelli in cui si trova il FLIP (installato al punto B1) ed il programma HYPERTERMINAL (installato con il sistema operativo Windows). Per facilità tali percorsi si possono ottenere dalla finestra proprietà degli stessi programmi e, come accade in tutti i file batch, devono essere inseriti con il formato MS-DOS standard. Quest’ultimo, in caso di nomi superiori agli 8 caratteri, prevede il mantenimento dei primi 6, l’aggiunta del carattere ~ e l’aggiunta di un numero progressivo che parte da 1 (ad esempio \Programmi\Windows XP\ diventa Progra~1\Window~1\).

B7) Modificare il file PRFWQ12.WSP con un semplice editor ASCII (ad esempio BLOCCO NOTE di Windows), andando ad impostare il giusto percorso in cui si trova il µC/51. In dettaglio la modifica riguarda il percorso del compilatore a riga di comando UMAKE.EXE installato al punto B2, facilmente ottenibile anche dalla finestra proprietà dello stesso programma. Viste le dimensioni del file PRFWQ12.WSP, si consiglia di cercare le ricorrenze di UMAKE.EXE e quindi modificarne il percorso descritto.

B8) Verificare che nel file PRFWQ12.CMD sia selezionato il microcontrollore usato ed eventualmente modificarlo con un editor ASCII.

B9) Lanciare il JFE editor installato al punto B2, tramite il menù di avvio di Windows.

B10) Aprire il file di predisposizione PRFWQ12.WSP usando l’apposito comando File|Open Workspace ed andandolo a selezionare sulla cartella di lavoro creata al punto B3.

B11) Impostare la modalità DEBUG, ovvero collegare il jumper J4.

B12) Alimentare la QTP 12.LIB.

B13) Premere DL.BAT sulla riga dei pulsanti del JFE. Con questa pressione si esegue la versione batch del FLIP che esegue il file di comandi PRFWQ12.CMD.

B14) Attendere il completamento delle fasi della programmazione verificando che non avvenga alcun errore; a questo punto premere un tasto per continuare.

B15) Attendere la partenza del programma di emulazione terminale HYPERTERMINAL.

B16) Impostare la modalità RUN, ovvero non collegare il jumper J4.

B17) Spegnere e riaccendere la QTP 12.LIB.

FIGURA 12: PROGRAMMAZIONE FLASH EPROM

B18) Attendere il completamento delle fasi della programmazione verificando che non avvenga alcun errore; a questo punto premere un tasto per continuare.
B18) A questo punto il programma demo deve partire e funzionare come già accaduto al punto A.
B19) Uscire da HYPERTERMINAL in modo da tornare al JFE.

C) Creazione del codice eseguibile del programma demo:
C1) Ricompilare il sorgente del programma demo con una semplice pressione di RE-MAKE sulla riga dei pulsanti del JFE e verificare che non avvengano errori. In questo modo si deve ottenere il file PRFWQ12.HEX, identico a quello presente sul disco grifo® e già usato nei punti B.

C2) Riprogrammare la FLASH con il codice del programma demo appena ricompilato, rieseguendo le operazioni dei punti B11÷B19.

Se durante l'esecuzione dei passi sopra elencati si presenta un problema od un'anomalia si consiglia all'utente di rileggere e ripetere i passi con attenzione e qualora il malfunzionamento persista, di contattare direttamente la grifo®.

In caso di esecuzione corretta di tutte le fasi sopra descritte l'utente ha realizzato e salvato il suo primo programma applicativo coincidente con il demo della QTP 12.LIB. A questo punto è possibile modificare il sorgente del/dei programmi demo in modo da soddisfare le richieste dell'applicazione da realizzare e ricompilarlo, riprogrammarlo e riferitarlo (passi da B11 a C2) in modo ciclico, fino a quando si ottiene la funzionalità desiderata. Raggiunto questo obiettivo si può eliminare il PC di sviluppo, ovvero:

D) Preparazione definitiva dell'applicazione:
D1) Impostare modalità RUN (jumper J4 non connesso) e scollegare PC di sviluppo se non richiesto dalla stessa applicazione.
BIBLIOGRAFIA

E' riportato di seguito, un elenco di manuali e note tecniche, a cui l'utente può fare riferimento per avere maggiori chiarimenti, sui vari componenti montati a bordo della scheda QTP 12.LIB.

Manuale ATMEL:
Microcontroller - AT89 series

Manuale HEWLETT PACKARD:
Optoelectronics Designer’s Catalog

Manuale MAXIM:
New Releases Data Book - Volume IV

Fogli tecnici NORITAKE ITRON:
Dot VFD Modules

Manuale PHILIPS:
Application notes and development tools for 80C51 microcontrollers

Manuale PHILIPS:
80C51 - Based 8-Bit Microcontrollers

Manuale PHILIPS:
FC-bus compatible ICs

Fogli tecnici SDEC:
Dot matrix Liquid Crystal Display module

Fogli tecnici S.E.:
SI series - Switching power supply

Manuale SGS-THOMSON:
Small signal transistor - Data Book

Manuale TEXAS INSTRUMENTS:
RS-422 and RS-485 Interface Circuits

Per reperire questi manuali fare riferimento alle case produttrici ed ai relativi distributori locali. In alternativa si possono ricercare le medesime informazioni o gli eventuali aggiornamenti ai siti internet delle case elencate.
APPENDICE A: DESCRIZIONE COMPONENTI DI BORDO

La grifo® fornisce un servizio di documentazione tecnica totalmente gratuito attraverso il proprio sito internet in cui possono essere scaricati le documentazioni tecniche complete dei componenti usati a bordo scheda. Si rimanda quindi l'utente a tali documenti scaricabili dalla pagina "Servizio Documentazion e Tecnica", di cui viene riportata solo la prima pagina.

MICROCONTROLLORE T89C5115 O T89C51CC02

T89C51CC02

8-bit MCU with CAN controller and Flash

1. Description

Part of the CANary™ family of microcontrollers dedicated to CAN network applications, the T89C51CC02 is a low pin count 8-bit Flash microcontroller.

While remaining fully compatible with the 80C51 it offers a superset of this standard microcontroller. In X2 mode a maximum external clock rate of 20 MHz reaches a 300 ns cycle time.

2. Features

- 80C51 core architecture:
 - 256 bytes of on-chip RAM
 - 256 bytes of on-chip ERAM
 - 16 Kbytes of on-chip Flash memory Read/Write cycle : 10k
 - Data Retention 10 years at 85°C
 - 2 Kbytes of on-chip Flash for Bootloader
 - 2 Kbytes of on-chip EEPROM Read/Write cycle : 100k
 - 14-source 4-level interrupt
 - Three 16-bit timer/counter
 - Full duplex UART compatible 80C51
 - maximum crystal frequency 40 MHz. In X2 mode, 20 MHz (CPU core, 40 MHz)
 - three or four ports: 16 or 20 digital I/O lines
 - two-channel 16-bit PCA with:
 - PWM (8-bit)
 - High-speed output
 - Timer and edge capture
 - Double Data Pointer
 - 21-bit watchdog timer (including 7 programmable bits)
 - A 10-bit resolution analog to digital converter (ADC) with 8 multiplexed inputs
 - Separate power supply for analog
 - Full CAN controller:
 - Fully compliant with CAN standard rev 2.0 A and 2.0 B
 - Optimized structure for communication management (via SFR)
 - 4 independent message objects:
 - Each message object programmable on transmission or reception

Besides the full CAN controller T89C51CC02 provides 16 Kbytes of Flash memory including In-system Programming (ISP), 2-Kbyte Boot Flash Memory, 2-Kbyte EEPROM and 512 bytes RAM.

Special attention is payed to the reduction of the electromagnetic emission of T89C51CC02.

- individual tag and mask filters up to 29-bit identifier/message object
- 8-byte cyclic data register (FIFO)/message object
- 16-bit status & control register/message object
- 16-bit Time-Stamping register/message object
- CAN specification 2.0 part A or 2.0 part B programmable message objects
- Access to message object control and data register via SFR
- Programmable reception buffer length up to 4 message objects
- Priority management of reception of hits on several message objects at the same time (Basic CAN Feature)
- Priority management for transmission
- message object overrun interrupt

- Supports
 - Time Triggered Communication.
 - Autobaud and Listening mode
 - Automatic reply mode programmable
 - 1 Mbit/s maximum transfer rate at 8MHz* Crystal frequency in X2 mode.
 - Readable error counters
 - Programmable link to on-chip Timer for Time Stamping and Network synchronization
 - Independent baud rate prescaler
 - Data, Remote, Error and overload frame handling

- Power saving modes:
 - Idle mode
 - Power down mode
 - Power supply: 5V +/- 10% , 3V +/- 10%
 - Temperature range: Industrial (-40° to +85°C)
 - Packages: PLCC28, SOIC28, (TSSOP28, SOIC24)**
Memory Organization

Program Memory
The 80C51 has separate address spaces for program and data memory. The Program memory can be up to 64k bytes long. The lower 4k can reside on-chip. Figure 1 shows a map of the 80C51 program memory.

The 80C51 can address up to 64k bytes of data memory to the chip. The MOVX instruction is used to access the external data memory.

The 80C51 has 128 bytes of on-chip RAM, plus a number of Special Function Registers (SFRs). The lower 128 bytes of RAM can be accessed either by direct addressing (MOV data addr) or by indirect addressing (MOV @Ri). Figure 2 shows the Data Memory organization.

Direct and Indirect Address Area
The 128 bytes of RAM which can be accessed by both direct and indirect addressing can be divided into three segments as listed below and shown in Figure 3.

1. Register Banks 0-3: Locations 0 through 1FH (32 bytes). The device after reset defaults to register bank 0. To use the other register banks, the user must select them in software. Each register bank contains eight 1-byte registers 0 through 7. Reset initializes the stack pointer to location 07H, and it is incremented once to start from location 08H, which is the first register (R0) of the second register bank. Thus, in order to use more than one register bank, the SP should be initialized to a different location of the RAM where it is not used for data storage (i.e., the higher part of the RAM).

2. Bit Addressable Area: 16 bytes have been assigned for this segment, 20H-2FH. Each one of the 128 bits of this segment can be directly addressed (0-7FH). The bits can be referred to in two ways, both of which are acceptable by most assemblers. One way is to refer to their address (i.e., 0-7FH). The other way is with reference to bytes 20H to 2FH. Thus, bits 0-7 can also be referred to as bits 20.0-20.7, and bits 8-FH are the same as 21.0-21.7, and so on. Each of the 16 bytes in this segment can also be addressed as a byte.

3. Scratch Pad Area: 30H through 7FH are available to the user as data RAM. However, if the stack pointer has been initialized to this area, enough bytes should be left aside to prevent SP data destruction.

Figure 2 shows the different segments of the on-chip RAM.

Figure 1. 80C51 Program Memory
EEPROM OPZIONALE

MICROCHIP

24AA512/24LC512/24FC512

512K I²C™ CMOS Serial EEPROM

Device Selection Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Vcc Range</th>
<th>Max. Clock Frequency</th>
<th>Temp. Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>24AA512</td>
<td>1.8-5.5V</td>
<td>400 kHz(1)</td>
<td>1</td>
</tr>
<tr>
<td>24LC512</td>
<td>2.5-5.5V</td>
<td>400 kHz</td>
<td>1, E</td>
</tr>
<tr>
<td>24FC512</td>
<td>2.5-5.5V</td>
<td>1 MHz</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: 100 kHz for Vcc < 2.5V

Features:

- Low-power CMOS technology:
 - Minimum write current 5 mA at 5.5V
 - Minimum read current 400 µA at 5.5V
 - Standby current 100 nA, typical at 5.5V
- 2-wire serial interface bus, PC™ compatible
- Cascadable for up to eight devices
- Self-timed erase/write cycle
- 128-byte Page Write mode available
- 5 ms max. write cycle time
- Hardware write-protect for entire array
- Schmitt Trigger inputs for noise suppression
- 1,000,000 erase/write cycles
- Electrostatic discharge protection > 4000V
- Data retention > 200 years
- 8-pin PDIP, SOIC (208 mil), and DFN packages
- 14-lead TSSOP package
- Pb-free finishes available
- Temperature ranges:
 - Industrial (I): -40°C to +65°C
 - Automotive (E): -40°C to +125°C

Description:

The Microchip Technology Inc. 24AA512/24LC512/24FC512 (24XX512™) is a 64K x 8 (512 Kbit) Serial Electrically Erasable PROM, capable of operation across a broad voltage range (1.8V to 5.5V). It has been developed for advanced, low-power applications such as personal communications and data acquisition. This device also has a page-write capability of up to 128 bytes of data. This device is capable of both random and sequential reads up to the 512K boundary. Functional address lines allow up to eight devices on the same bus, for up to 4 Mbit address space. This device is available in the standard 8-pin plastic DIP, SOIC, DFN and 14-lead TSSOP packages.

Block Diagram

Package Type

* 24XX512 is used in this document as a generic part number for the 24AA512/24LC512/24FC512 devices.

© 2005 Microchip Technology Inc.
1 FEATURES

- I^2^C^ bus^ interface^ operating^ supply^ voltage: 2.5 V to 6 V
- Clock operating supply voltage (0 to +70 °C): 1.0 V to 6.0 V
- 240 x 8-bit low-voltage RAM
- Data retention voltage: 1.0 V to 6 V
- Operating current (at f^SCL^ = 0 Hz): max. 50 µA
- Clock function with four year calendar
- Universal timer with alarm and overflow indication
- 24 or 12 hour format
- 32,768 kHz or 50 Hz time base
- Serial input/output bus (I^2^C)
- Automatic word address incrementing
- Programmable alarm, timer and interrupt function
- Slave address:
 - READ: A1 or A3
 - WRITE: A0 or A2.

2 GENERAL DESCRIPTION

The PCF8583 is a clock/calendar circuit based on a 2048-bit static CMOS RAM organized as 256 words by 8 bits. Addresses and data are transferred serially via the two-line bidirectional I^2^C^-bus. The built-in word address register is incremented automatically after each written or read data byte. Address pin A0 is used for programming the hardware address, allowing the connection of two devices to the bus without additional hardware.

The built-in 32.768 kHz oscillator circuit and the first 8 bytes of the RAM are used for the clock/calendar and counter functions. The next 8 bytes may be programmed as alarm registers or used as free RAM space. The remaining 240 bytes are free RAM locations.

3 QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V^DD^</td>
<td>supply voltage operating mode</td>
<td>I^2^C^-bus active</td>
<td>2.5</td>
<td>6.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I^2^C^-bus inactive</td>
<td>1.0</td>
<td>6.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I^DD^</td>
<td>supply current operating mode</td>
<td>f^SCL^ = 100 kHz</td>
<td>–</td>
<td>–</td>
<td>200</td>
<td>µA</td>
</tr>
<tr>
<td>I^DDO^</td>
<td>supply current clock mode</td>
<td>f^SCL^ = 0 Hz; V^DD^ = 5 V</td>
<td>–</td>
<td>10</td>
<td>50</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f^SCL^ = 0 Hz; V^DD^ = 1 V</td>
<td>–</td>
<td>2</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>T^amb^</td>
<td>operating ambient temperature range</td>
<td></td>
<td>–40</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T^stg^</td>
<td>storage temperature range</td>
<td></td>
<td>–65</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

4 ORDERING INFORMATION

<table>
<thead>
<tr>
<th>TYPE NUMBER</th>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCF8583P</td>
<td>DIP8</td>
<td>plastic dual in-line package; 8 leads (300 mil)</td>
<td>SOT97-1</td>
</tr>
<tr>
<td>PCF8583T</td>
<td>SO8</td>
<td>plastic small outline package; 8 leads; body width 7.5 mm</td>
<td>SOT176-1</td>
</tr>
</tbody>
</table>
APPENDICE B: INDICE ANALITICO

Simboli

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>/INTRTC</td>
<td>13</td>
</tr>
<tr>
<td>µC/51</td>
<td>8, 22</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accensione</td>
<td>12, 20</td>
</tr>
<tr>
<td>Accessori</td>
<td>7, 25</td>
</tr>
<tr>
<td>Ambienti di sviluppo</td>
<td>8, 10, 19</td>
</tr>
<tr>
<td>Area codice</td>
<td>11</td>
</tr>
<tr>
<td>Assistenza</td>
<td>1</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASCOM 8051</td>
<td>8</td>
</tr>
<tr>
<td>Baud rate</td>
<td>17, 20, 24</td>
</tr>
<tr>
<td>Bibliografia</td>
<td>28</td>
</tr>
<tr>
<td>Bit per carattere</td>
<td>20, 24</td>
</tr>
<tr>
<td>Boot loader</td>
<td>16</td>
</tr>
<tr>
<td>Buffer ricezione</td>
<td>9</td>
</tr>
<tr>
<td>Buffer trasmissione</td>
<td>9</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>7, 16</td>
</tr>
<tr>
<td>Cariche elettrostatiche</td>
<td>1</td>
</tr>
<tr>
<td>Cavo seriale</td>
<td>6</td>
</tr>
<tr>
<td>CCR 9+9R</td>
<td>7, 25</td>
</tr>
<tr>
<td>Codice</td>
<td>11, 14</td>
</tr>
<tr>
<td>Collegamenti</td>
<td>6</td>
</tr>
<tr>
<td>Come inizare con µC/51</td>
<td>24</td>
</tr>
<tr>
<td>Compilazione programma</td>
<td>27</td>
</tr>
<tr>
<td>Comunicazione seriale</td>
<td>6, 20</td>
</tr>
<tr>
<td>COMx</td>
<td>6</td>
</tr>
<tr>
<td>Configurazione scheda</td>
<td>9</td>
</tr>
<tr>
<td>Console</td>
<td>12, 22, 23</td>
</tr>
<tr>
<td>Contenitore</td>
<td>1</td>
</tr>
<tr>
<td>Controllo di flusso</td>
<td>24</td>
</tr>
<tr>
<td>Creazione del codice</td>
<td>27</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDS MICRO C 51</td>
<td>8</td>
</tr>
<tr>
<td>DEBUG</td>
<td>16, 26</td>
</tr>
<tr>
<td>Descrizione</td>
<td>9</td>
</tr>
<tr>
<td>DIR</td>
<td>20</td>
</tr>
<tr>
<td>Direttive</td>
<td>1</td>
</tr>
</tbody>
</table>
Diritti 2
Display 13
DL.BAT 26

E
EEPROM 13, 22
EEPROM opzionale 13, A-3
Emulazione terminale 7
Entrata 11
ETHERNET 7
Evoluzione 3

F
Files forniti 23
FLASH EPROM 7, 10, 14, 16, 26
FLIP 7, 10, 16, 26

G
Garanzia 1
GET51 7
Grafica 24

H
Handshake 24
Header 20, 23
HI TECH C 51 8
HYPERTERMINAL 7, 23, 24

I
Indicazioni generali 4
Indirizzi 11
Ingresso console 12
Inizializzazione 13, 22
Integrazione libreria 10, 22
Interrupt 12, 14
Introduzione 1
ISP 7, 16

J
Jumpers 9, 16, 24

L
LADDER WORK 8
Librerie 20, 23
Linea seriale 6, 9, 20

M
Marchi registrati 2
Materiale necessario 6
Memorie di massa 6
Microcontrollore 16, A-1, A-2
Modalità 16
Monitor 6
Mouse 6

O
Opzioni 24

P
Parità 20, 24
PC di sviluppo 6
Personal Computer 6
Preparazione definitiva applicazione 27
Progetti 20, 23
Programma applicativo 19, 20
Programma emulazione terminale 7
Programmazione FLASH 26
Programmi demo 20, 23, 25
Protezioni 1
Protocollo fisico 20, 24
Protocollo logico 20
Punti di entrata 11, 12

R
Rallentamenti 9, 14
RAM 14, 15
Rete 20
Risorse usate 14
Ritardi 9
RS 232 7, 9
RS 422 20
RS 485 20
RTC A-4
RUN 16, 25, 27

S
Seriale 20, 24
Setup locale 19
Sicurezza 1
Sistema operativo 6
Software 7
SRAM+RTC A-4
Stack 14
Stato console 12
Stop bit 20, 24
SYS51CW 8
SYS51PW 8

T
T89C5115 16, 18, A-1
T89C51CC02 16, A-1
Temporizzazioni 14
Timeout Error 17
TIMER 14

U
USB 7
Uscita console 12
Uscita digitale 13

V
Versione 3
Vettore 14